

Mr Nick Hanigan nhanigan@paspaley.com.au Your Ref: 0ur Ref: 15701

29/11/2017

# BARNESON BOULEVARD DETAILED DESIGN – TRAFFIC MODELLING ASSESSMENT REVIEW OF JACOBS MEMORANDUM 27 MAY 2016 (MODELLING MEMO)

## I INTRODUCTION

This document has been prepared by myself (David Wilkins, Principal and Senior Traffic Engineer - i3 consultants WA (i3)) in response to the request to undertake a desktop review of the Barneson Boulevard Detailed Design – Traffic Modelling Assessment memorandum prepared by Jacobs dated 27 May 2016, hereinafter referred to as the Jacobs Modelling Memo.

In addition to the review of the Jacobs Modelling memo, the desktop review is to consider and analyse an alternate plan for Barneson Boulevard that terminate at McMinn Street with a roundabout. This desktop analysis is to include comparisons between the current design and the alternate design.



## 2 CURRENT DESIGN

The current design, i.e. the design used as the basis for the Jacobs Modelling Memo, is difficult to ascertain as this Memo includes different intersection design configurations for the VISSUM model and the SIDRA Intersection models. An example of this is that the SIDRA Intersection model shown on page 37 of the Jacobs Modelling Memo indicates there will not be any right turns from 'Barneson Blvd SW' into Tiger Brennan Dr or straight through movements from a new 'TBD NW' leg, due to the one-way carriageway of Tiger Brennan Drive. The VISSUM model allows for these movements, as shown in Figure 1 below.

|          | Movement                | Vehicles                                           | Ave Delay<br>(s) | LOS | Ave Q | Max Q |  |  |  |  |
|----------|-------------------------|----------------------------------------------------|------------------|-----|-------|-------|--|--|--|--|
|          | AM Peak: Barneson Boule | oulevard/ Tiger Brennan Drive Western Intersection |                  |     |       |       |  |  |  |  |
|          | Barneson Blvd SW right  | 36                                                 | 42               | С   | 2     | 29    |  |  |  |  |
|          | TBD NW left             | 0                                                  | 0                | А   | 0     | 0     |  |  |  |  |
|          | TBD NW through          | 8                                                  | 32               | С   | 1     | 16    |  |  |  |  |
|          | PM Peak: Barneson Boule | levard/ Tiger Brennan Drive Western Intersection   |                  |     |       |       |  |  |  |  |
| (*////// | Barneson Blvd SW right  | 9                                                  | 44               | D   | 1     | 12    |  |  |  |  |
|          | TBD NW left             | 0                                                  | 0                | А   | 0     | 0     |  |  |  |  |
|          | TBD NW through          | 5                                                  | 50               | D   | 2     | 14    |  |  |  |  |
|          |                         |                                                    |                  |     |       |       |  |  |  |  |

Figure 1 – Inconsistent VISSUM and SIDRA Model intersection configuration (Barneson Blvd/TBD)

Another difficulty in ascertaining the base design for the models within the Jacobs Modelling Memo is the lack of SIDRA Intersection data and layout diagrams for key intersections other than on Barneson Boulevard, i.e. Daly St/ McMinn St/ Stuart Hwy and Bennett St/ McMinn St/ Tiger Brennan Dr. The VISSUM model allows for up 250 vehicles per hour to turn right from Daly St into McMinn street when this movement is currently prohibited. The Jacobs Modelling Memo indicates that the layout will be altered to allow this, i.e. Figure 4: (reproduced as Figure 2 below) but does not include a SIDRA intersection model that is network linked to the Barneson St SIDRA Intersection network model to reflect this. The same applies for the Bennett St/ McMinn St/ Tiger Brennan Dr intersection.



Figure 2 – VISSUM Model intersection configuration (Daly St/ McMinn St/ Stuart Hwy)



The SIDRA model within the Jacobs Modelling Memo is also inconsistent with the published proposed layout of Barneson Boulevard, as shown in Figure 3 below.

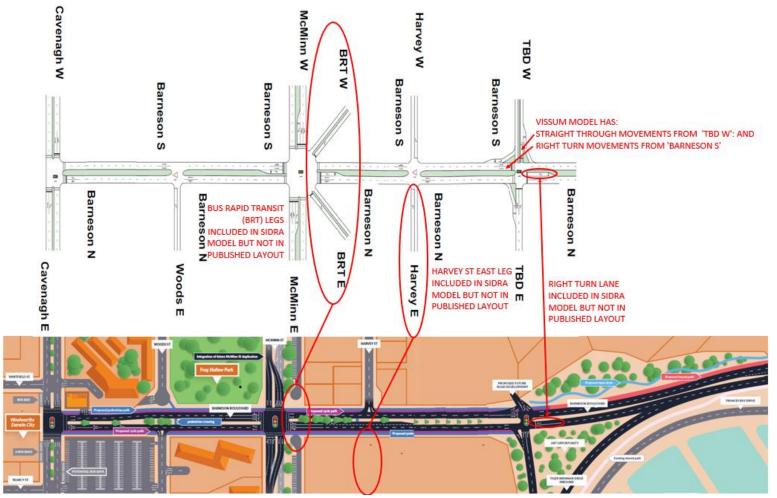



Figure 3 – Assessed inconsistencies between VISSUM, SIDRA and published layout of Barneson Street proposal



As indicated, it is difficult to determine a single layout configuration for this assessment due to assessed inconsistencies with layouts and indicated movements within the Jacobs Modelling Memo and the published layout. In order to meet the requested requirement for a comparative analysis of the alternate layout (i.e. termination and roundabout at Barneson/ McMinn) it is necessary to adopt 'base layouts' for Barneson Blvd and the road network. These adopted base layouts are:

- Jacobs Network Model Layout Figure 4 below;
- Option 1 (Barneson terminates at McMinn with roundabout) Figure 5 on the following page; and
- Option 2 (Barneson terminates at McMinn with traffic signals) Figure 6 on the following page.

Note that Option 2 has been prepared to enable an assessment to be made of the impacts of roundabout control on the proposed Bus Rapid Transit route compared with traffic signal control. Turning prohibitions at each assessed Key intersection (Ki#) are shown in the individual assessments. The road colours reflect the current City of Darwin Road Classifications as shown in Figure 4 below. It is interesting to note that only McMinn St is classified as an arterial road and questions the desirability of an arterial road connection (i.e. Barneson St) between this road and Cavenagh Street – an unclassified CBD road.

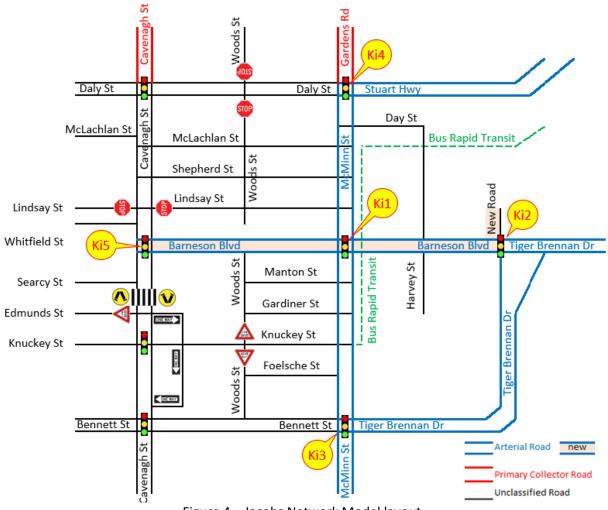
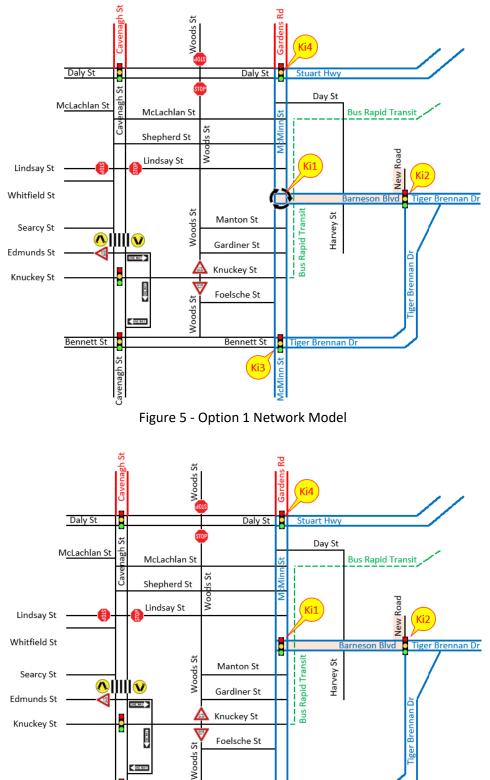
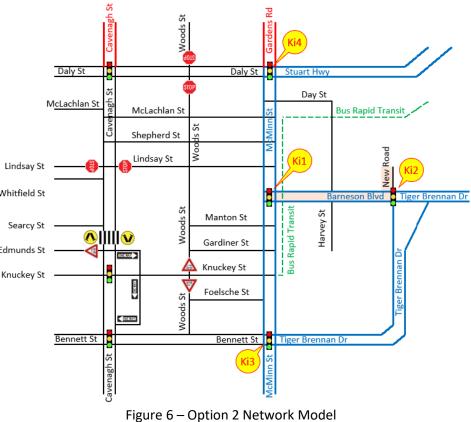
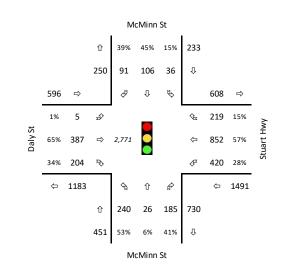
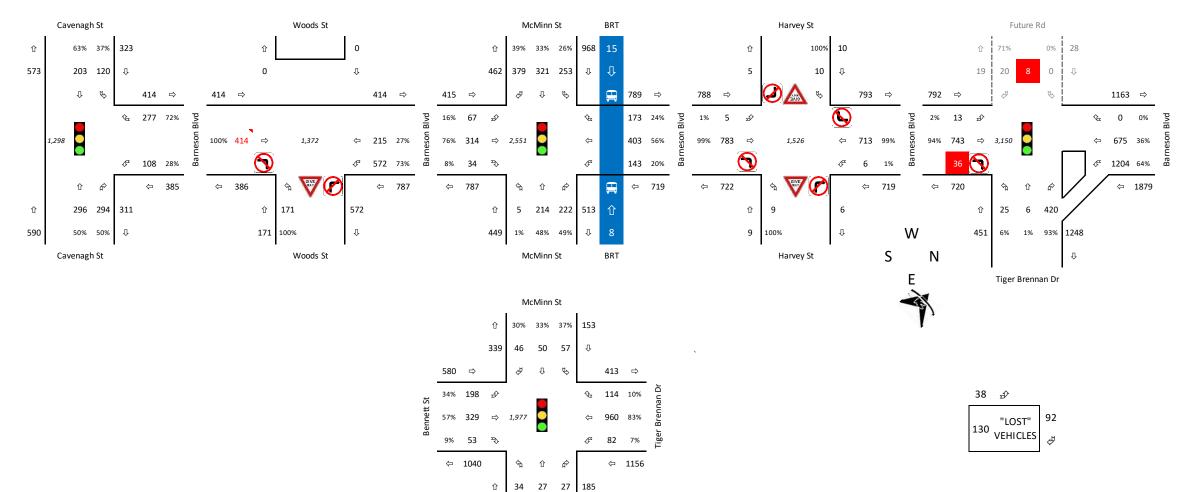





Figure 4 – Jacobs Network Model layout



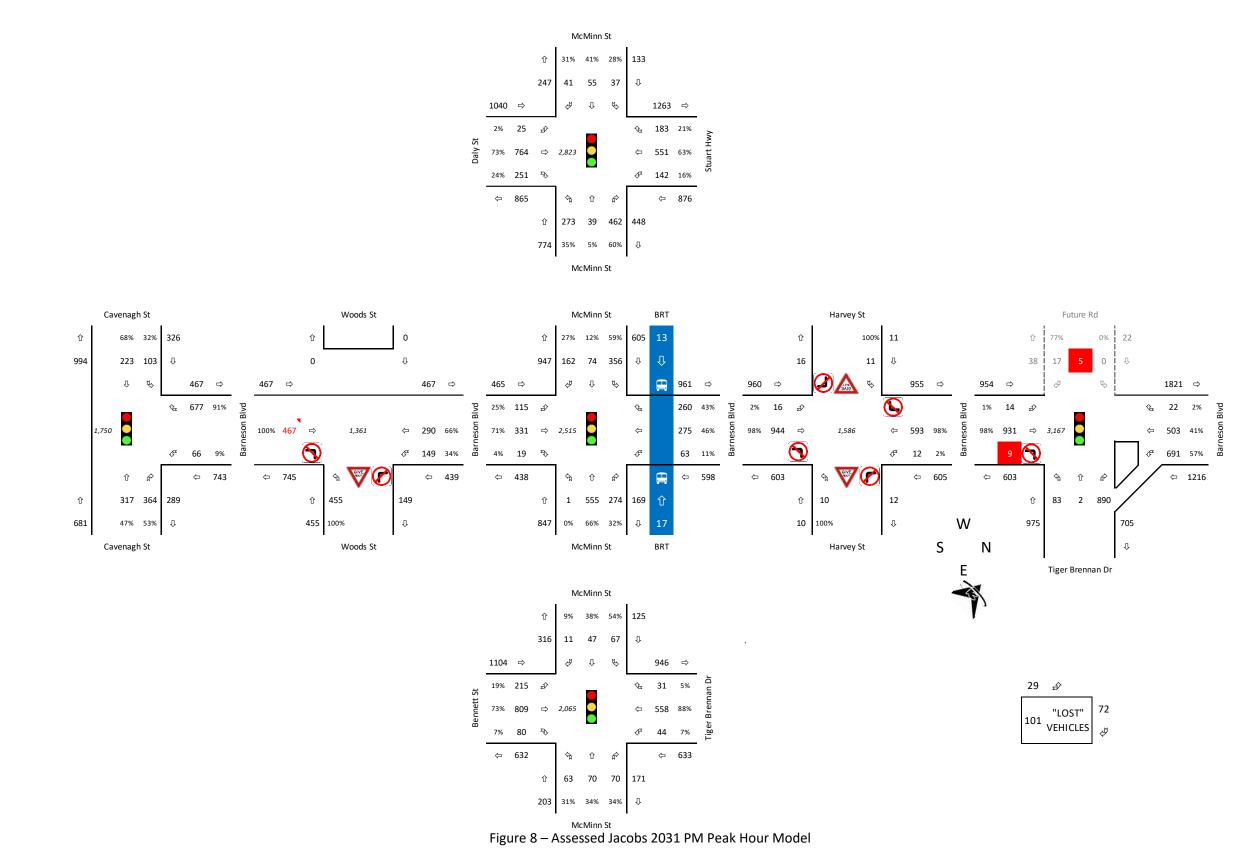






#### 3 **TRIP ASSIGNMENTS**

The assessed trip assignments for the Jacobs Model, based on the VISSUM data provided in Appendix B of the Jacobs Modelling Memo, is shown in Figure 7 below and Figure 8 on the following page for the AM and PM peak hours.

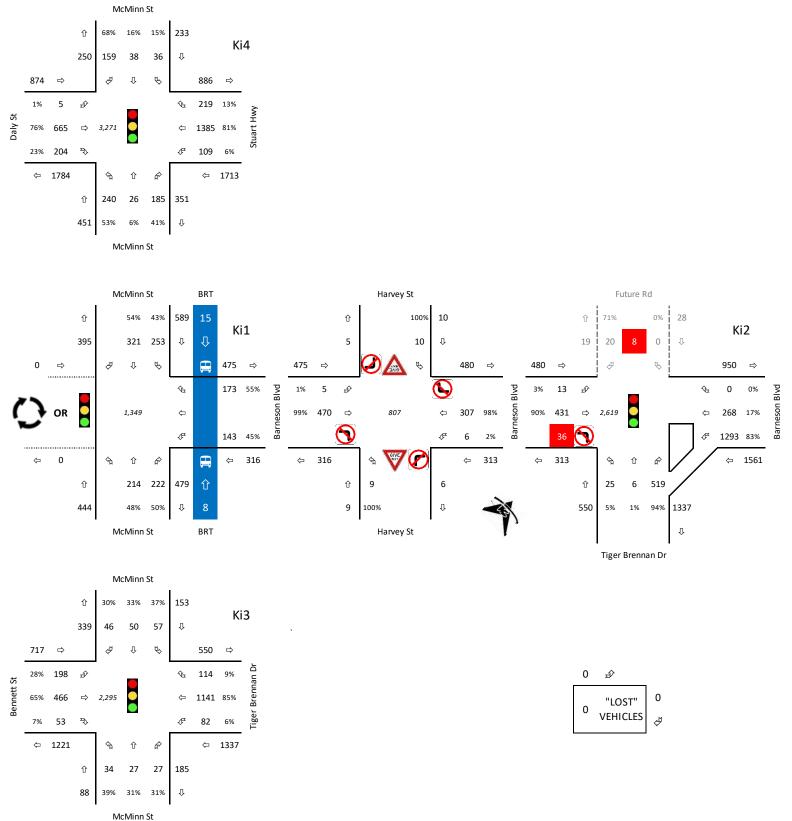





McMinn St Figure 7 – Assessed Jacobs 2031 AM Peak Hour Model

39% 31% 31% 🖓

88






Both the Jacobs models indicate a 'loss' of between 100 and 130 vehicles on Tiger Brennan Dr between Barneson Blvd and McMinn St/ Bennett St. As there are no intersections or developments here, this appears to be a modelling error.



The assessed trip assignments for the Options model based on the VISSUM data provided in Appendix B of the Jacobs Modelling Memo, is shown in Figure 9 below and Figure 10 on the following page for the AM and PM peak hours.



GIVITITI JL

Figure 9 – Assessed Options 1&2 2031 AM Peak Hour Model



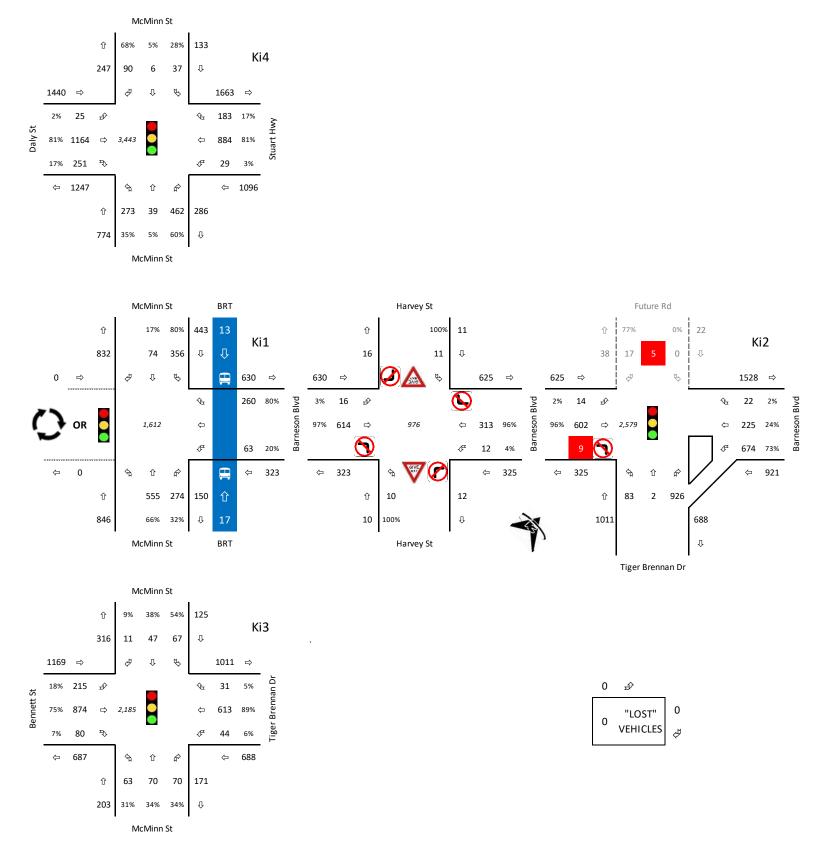
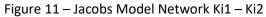
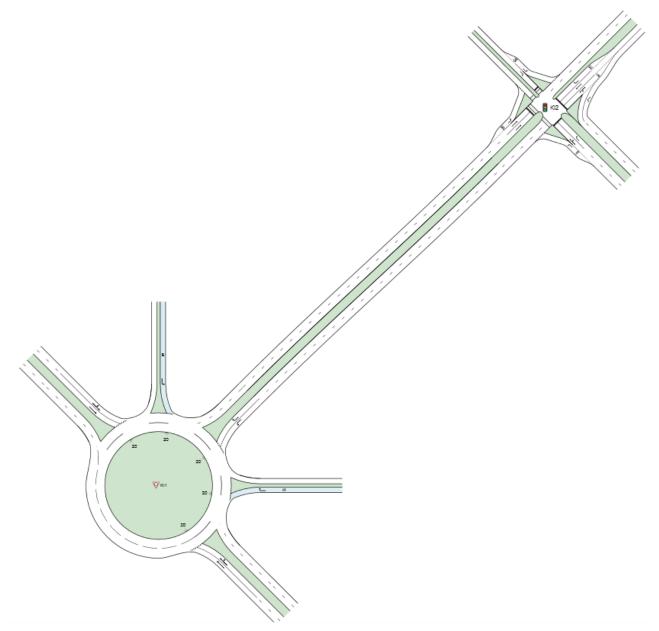



Figure 10 – Assessed Options 1&2 2031 PM Peak Hour Model

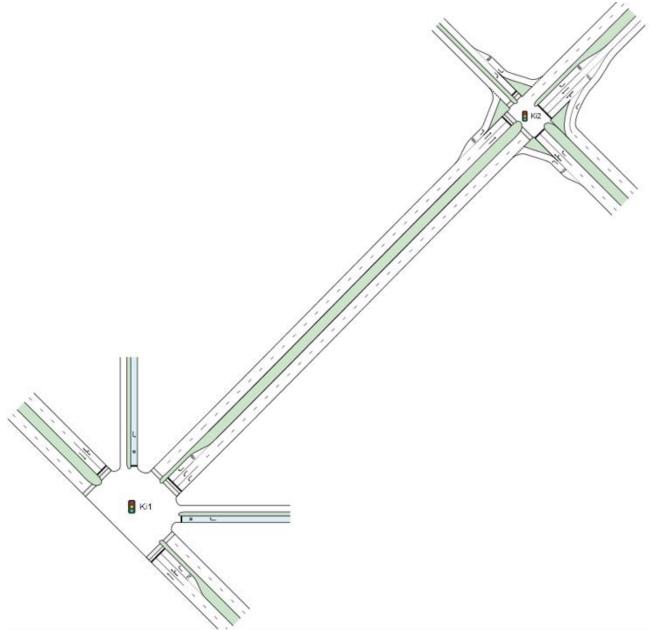






## 4 **OPTIONS ASSESSMENTS**

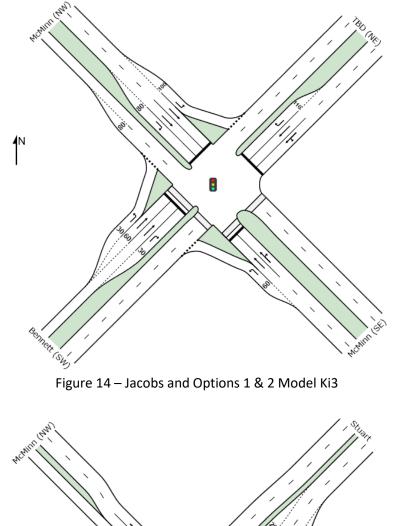
SIDRA Intersection models have been prepared for each Key intersection as shown in Figure 11 to Figure 15 below and on the following pages. Traffic signal phasing is included in **Appendix A.** 



















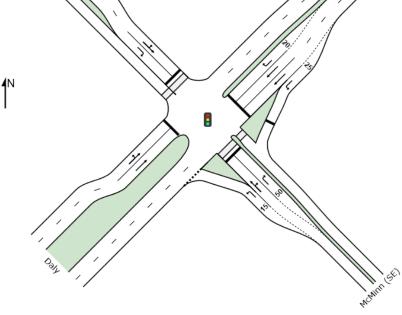




Figure 15 – Jacobs and Options 1 & 2 Model Ki4



The traffic data from the trip assignment models in **Section 3** was used as input data within each SIDRA Intersection model with the key performance indicators of 'Degree of Saturation", 'Average Delay', 'Level of Service' and '95% Back of Queue (m)' summarised for each intersection, movement and option and compared against the assessed Jacobs data.

An explanation of the various intersection performance criteria used is provided as Table 1 below.

|             |             |     | Avera                         | age Delay per v | ehicle (d) in se            | conds           |             |                                                                                                                                                                                                                                                                                                |
|-------------|-------------|-----|-------------------------------|-----------------|-----------------------------|-----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIDRA v/c & | colour code | LoS | Unsignalised<br>intersections | Roundabouts     | Signalised<br>intersections | All (RTA)       | v/c Range   | Performance Comments                                                                                                                                                                                                                                                                           |
|             |             | A   | d ≤ 10                        | d ≤ 10          | d ≤ 10                      | d ≤ 14.5        | ≤0.44       | Good operation and plenty of spare capacity<br>Stable free flow conditions where drivers are able to select                                                                                                                                                                                    |
| < 0.6       | ⇔           | в   | 10 < d ≤ 15                   | 10 < d ≤ 20     | 10 < d ≤ 20                 | 14.5 < d ≤ 28.5 |             | desired speeds and to easily manoeuvre within the traffic<br>stream.                                                                                                                                                                                                                           |
|             |             | C   | 15 < d ≤ 25                   | 20 < d ≤ 35     | 20 < d ≤ 35                 | 28.5 < d ≤ 42.5 | 0.45 - 0.64 | Acceptable delays and spare capacity<br>Stable flow but most drivers are restricted to some extent in<br>their ability to select their desired speed and to manoeuvre<br>within the traffic stream.                                                                                            |
| 0.6 - 0.7   | ⇔           |     |                               |                 |                             |                 |             |                                                                                                                                                                                                                                                                                                |
| 0.7 - 0.8   | ⇔           | D   | 25 < d ≤ 35                   | 35 < d ≤ 50     | 35 < d ≤ 55                 | 42.5 < d ≤ 56.5 | 0.65 - 0.84 | Acceptable delays (Expected typical peak hour conditions)<br>Close to the limit of stable flow. All drivers are restricted in<br>their ability to select their desired speed and to manoeuvre<br>within the traffic stream. Small increases in traffic flow may<br>cause operational problems. |
| 0.8 - 0.9   |             |     |                               |                 |                             |                 |             |                                                                                                                                                                                                                                                                                                |
| 0.9 - 1.0   | ₽           | E   | 35 < d ≤ 50                   | 50 < d ≤ 70     | 55 < d ≤ 80                 | 56.5 < d ≤ 70.5 | 0.85 - 1.04 | Near capacity and senstive to disturbances in flows<br>Traffic volumes are close to capacity and there is virtually no<br>freedom to select desired speeds. Flow is unstable and minor<br>disturbances within the traffic stream will cause breakdown<br>leading to long queues and delays.    |
| > 1.0       | Ŷ           | F   | 50 < d                        | 70 < d          | 80 < d                      | 70.5 < d        | >1.25       | At Capacity - Requires other control mode and/ or additional<br>lanes<br>In the zone of forced flow where the amount of traffic<br>approaching the point under consideration exceeds that<br>which can pass. Flow breakdown occurs and extensive<br>queues and delays result.                  |

Table 1 – Intersection performance criteria

The assessed Degree of Saturation performance criteria for each intersection and option for each peak hour is shown in the following sections. Degree of Saturation is defined as the ratio or arrival (or demand) flow to Capacity (also known as volume/ capacity, v/c ratio). Degrees of saturation above 1.0 represent oversaturated conditions (demand flow exceeds capacity), and degrees of saturation below 1.0 represent undersaturated conditions (demand flow is below capacity). The Degree of Saturation is included in Column 1 of Table 1 above, as v/c.



## 4.1 KI1: BANESON BLVD/ MCMINN STREET & KI2: BARNESON BLVD/ TBD (NETWORK)

These two interactions have been assessed within a network model, as per the Jacobs Modelling Memo. The network model considers the influence of the operation of each intersection on the other intersection.




Figure 16 – Ki1 & Ki2 intersection assessment based on Degree of Saturation

A summary of the assessed 'Average Delay', 'Level of Service' and '95% Back of Queue (m) is shown in Table 2 and Table 3 on the following pages.



| 202 | 1 AM Peak Hour                 | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |
|-----|--------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|
| 203 | and reak hour                  | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |
| Ki1 | Barneson Blvd/ McMinn St       |        |             |          |        |             |          |                       |          |          |
| 1   | McMinn neb left into Barneson  | 51.5   |             |          | D      |             |          | 86.9                  |          |          |
| 2   | McMinn neb straight ahead      | 47.3   | 3.8         | 39.5     | D      | А           | D        | 86.9                  | 7.9      | 80.4     |
| 4   | McMinn neb right into Barneson | 62.1   | 8.3         | 60.1     | E      | А           | E        | 51.6                  | 7.9      | 48.6     |
| 5   | BRT nwb                        | 73.5   | 14.2        | 64.6     | E      | В           | E        | 7.2                   | 1.1      | 6.6      |
| 6   | Barneson swb left into McMinn  | 41.2   | 4.7         | 40.7     | D      | А           | D        | 99.4                  | 5.5      | 24.6     |
| 7   | Barneson swb straight ahead    | 36.6   |             |          | D      |             |          | 102.0                 |          |          |
| 8   | Barneson swb right into McMinn | 42.5   | 8.8         | 43.3     | D      | А           | D        | 63.2                  | 6.1      | 63.8     |
| 9   | BRT seb                        | 74.6   | 11.1        | 65.4     | E      | В           | E        | 13.7                  | 2.4      | 12.5     |
| 10  | McMinn seb left into Barneson  | 31.8   | 4.2         | 22.8     | С      | А           | С        | 90.9                  | 10.9     | 63.4     |
| 11  | McMinn seb straight ahead      | 28.6   | 4.1         | 17.4     | С      | А           | В        | 102.0                 | 10.9     | 64.7     |
| 12  | McMinn seb right into Barneson | 42.7   |             |          | D      |             |          | 114.1                 |          |          |
| 13  | Barneson neb left into McMinn  | 57.1   |             |          | E      |             |          | 82.0                  |          |          |
| 14  | Barneson neb straight ahead    | 52.6   |             |          | D      |             |          | 83.4                  |          |          |
| 15  | Barneson neb right into McMinn | 54.4   |             |          | D      |             |          | 14.0                  |          |          |
| All | Vehicles                       | 42.9   | 5.6         | 35.5     | D      | Α           | D        | 114.1                 | 10.9     | 80.4     |

| 202 | 1 PM Peak Hour                    | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |
|-----|-----------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|
| 203 | I FIVI FEAK HOUI                  | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |
| Ki1 | Barneson Blvd/ McMinn St          |        |             |          |        |             |          |                       |          |          |
| 1   | McMinn neb left into Barneson     | 44.7   |             |          | D      |             |          | 133.9                 |          |          |
| 2   | McMinn neb straight ahead         | 42.0   | 4.6         | 41.5     | D      | А           | D        | 133.9                 | 18.4     | 128.8    |
| 4   | McMinn neb right into Barneson    | 53.4   | 9.3         | 52.4     | D      | А           | D        | 106.9                 | 18.1     | 113.2    |
| 5   | BRT nwb                           | 68.9   | 12.0        | 77.0     | E      | В           | E        | 14.3                  | 1.9      | 15.9     |
| 6   | Barneson swb left into McMinn     | 29.9   | 3.9         | 28.3     | С      | Α           | С        | 47.6                  | 2.7      | 8.6      |
| 7   | Barneson swb straight ahead       | 25.3   |             |          | С      |             |          | 48.4                  |          |          |
| 8   | Barneson swb right into McMinn    | 34.8   | 7.8         | 32.3     | С      | А           | С        | 81.7                  | 8.0      | 83.1     |
| 9   | BRT seb                           | 68.4   | 10.1        | 76.3     | E      | В           | E        | 10.9                  | 1.9      | 12.1     |
| 10  | McMinn seb left into Barneson     | 24.1   | 4.6         | 23.8     | С      | А           | С        | 78.3                  | 14.9     | 86.6     |
| 11  | McMinn seb straight ahead         | 28.7   | 5.5         | 27.0     | С      | А           | С        | 33.7                  | 4.0      | 18.8     |
| 12  | McMinn seb right into Barneson    | 47.4   |             |          | D      |             |          | 43.5                  |          |          |
| 13  | Barneson neb left into McMinn     | 54.8   |             |          | D      |             |          | 91.1                  |          |          |
| 14  | Barneson neb straight ahead       | 50.1   |             |          | D      |             |          | 93.3                  |          |          |
| 15  | 15 Barneson neb right into McMinn |        |             |          | D      |             |          | 7.0                   |          |          |
| All | Vehicles                          | 39.8   | 6.1         | 37.4     | D      | Α           | D        | 93.3                  | 18.4     | 128.8    |

Table 2 – Ki1: Barneson Blvd/ McMinn St Average Delay, Level of Service & Queue Assessment



| 2031 AM Peak Hour                   | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |   |    |
|-------------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|---|----|
|                                     | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |   |    |
| Ki2 Barneson Blvd/ Tiger Brennan Dr |        |             |          |        |             |          |                       |          |          |   |    |
| 16 TBD nwb left into Barneson       | 8.6    | 7           | 7.4      |        | А           |          | 0.3                   | 1        | .8       |   |    |
| 17 TBD nwb straight into New Rd     | 42.5   | 28.5        |          | D      | С           |          | 11.8                  | 85       | 5.2      |   |    |
| 18 TBD nwb right into TBD           | 48.1   | 34          | l.1      | D      | (           | С        | 11.8                  | 85       | 5.2      |   |    |
| 19 TBD swb left into TBD            | 9.6    | 5           | .7       | А      | A           |          | 17.3                  | 0        | .0       |   |    |
| 20 TBD swb straight into Barneson   | 18.2   | 28          | 3.3      | В      | (           | C        | 17.9                  | 86       | 5.4      |   |    |
| 21 TBD swb right into New Rd        | 71.1   | 71          | 71.1     |        | 71.1        |          | l                     | E        | 0.1      | 0 | .5 |
| 22 New Rd left into TBD             | 11.3   | 9           | .6       | В      | /           | 4        | 0.0                   | 0        | .1       |   |    |
| 23 New Rd right into Barneson       | 74.1   | 74          | l.1      | E      | I           | E        | 1.4                   | 9        | .7       |   |    |
| 24 Barneson left into New Rd        | 5.9    | 5.9         |          | А      | A           |          | 0.0                   | 0        | .3       |   |    |
| 25 Barneson straight into TBD neb   | 25.8   | 36          | 5.9      | С      | D           |          | 16.7                  | 78       | 3.2      |   |    |
| All Vehicles                        | 21.7   | 19.6        |          | С      | В           |          | 17.9                  | 86.4     |          |   |    |

| 2031 PM Peak Hour                   | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |
|-------------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|
| 2051 PIVI Peak Hour                 | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |
| Ki2 Barneson Blvd/ Tiger Brennan Dr |        |             |          |        |             |          |                       |          |          |
| 16 TBD nwb left into Barneson       | 7.6    | 6           | .9       | А      | А           |          | 6.5                   | 5        | .1       |
| 17 TBD nwb straight into New Rd     | 38.0   | 28          | 3.9      | D      | (           | С        |                       | 16       | 2.9      |
| 18 TBD nwb right into TBD           | 43.7   | 34          | 1.5      | D      | (           | C        | 179.9                 | 16       | 2.9      |
| 19 TBD swb left into TBD            | 8.4    | 12          | 2.1      | А      | A B         |          | 86.7                  | 63       | 3.9      |
| 20 TBD swb straight into Barneson   | 24.1   | 29          | 9.5      | С      | (           | C        | 87.8                  | 63       | 3.9      |
| 21 TBD swb right into New Rd        | 74.3   | 74          | 1.3      | E      |             | -        | 10.7                  | 10       | ).7      |
| 22 New Rd left into TBD             | 21.6   | 16          | 5.0      | С      | I           | 3        | 0.2                   | 0        | .2       |
| 23 New Rd right into Barneson       | 73.9   | 73          | 3.9      | E      |             | Ξ        | 8.2                   | 8        | .2       |
| 24 Barneson left into New Rd        | 6.0    | 6           | 6.0      |        | /           | Ą        | 0.3                   | 0        | .3       |
| 25 Barneson straight into TBD neb   | 37.9   | 43          | 3.7      | D      | [           | )        | 187.3                 | 12       | 2.6      |
| All Vehicles                        | 30.4   | 29.9        |          | С      | C C         |          | 187.3                 | 162.9    |          |

Table 3 – Ki2: Barneson Blvd/ Tiger Brennan Dr Average Delay, Level of Service & Queue Assessment

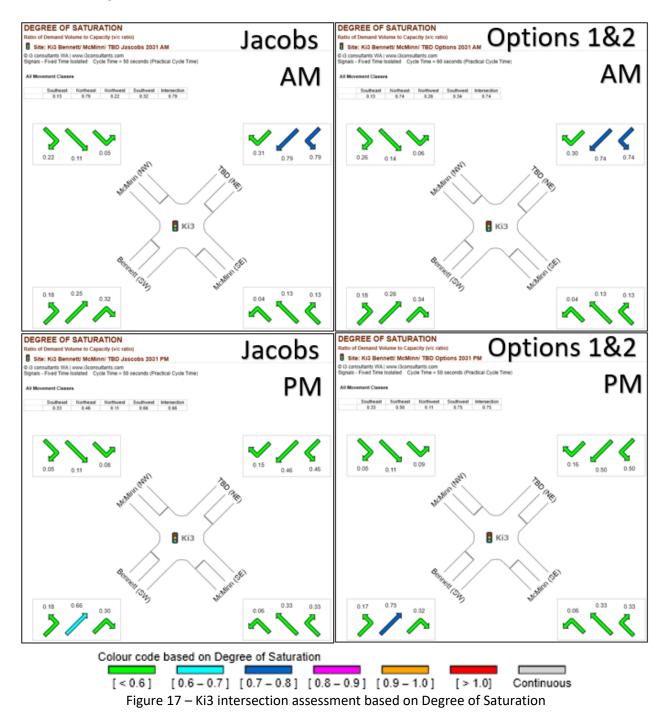

The intersection performance assessment data indicates that there are significant improvements to the assessed delays with Option 1, i.e. terminating Barneson Boulevard at McMinn Street and providing a dual lane roundabout at this intersection. The overall average delay with the current Jacobs 4-way traffic signal controlled layout is assessed as around 40 seconds in the SIDRA Model prepared by i3 consultants for this review and between 45-50 seconds in the Jacobs Modelling Memo SIDRA report. The assessed overall average delay with Barneson Blvd terminating at McMinn St is 6 seconds with roundabout control and between 35 and 40 seconds with traffic signal control.

Figure 16, Table 2 and Table 3 above indicates that all layouts and options would perform at an acceptable level and that Option 2 performs at the best level, i.e. "Good operation and plenty of spare capacity".



## 4.2 KI3: BENNETT ST/ MCMINN ST

This intersection has been modelled as a standalone intersection. Options 1 & 2 reflect the forecast changed traffic volumes and movements associated with the removal of the Barneson Blvd section between McMinn St and Cavanaugh St, as indicated in **Section 3** of this assessment.



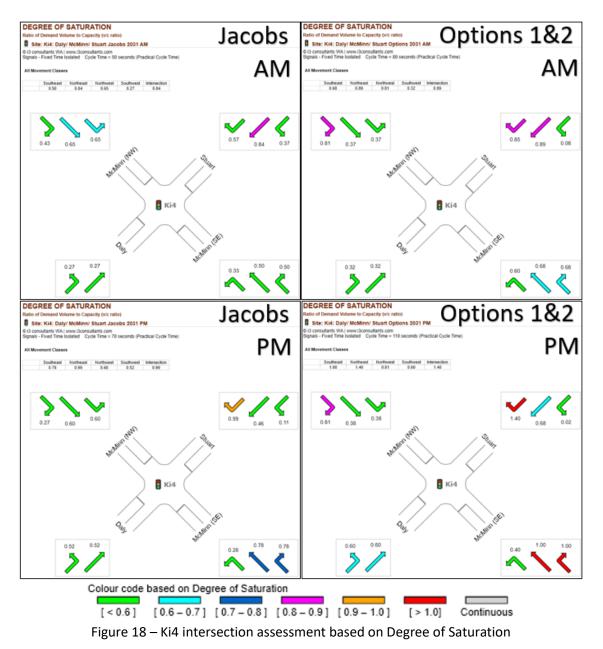
A summary of the assessed 'Average Delay', 'Level of Service' and '95% Back of Queue (m) is shown in Table 4 on the following page.



| 2031 AM Peak Hour                    | Ave       | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |
|--------------------------------------|-----------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|
|                                      | Jacobs    | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |
| Ki3 Bennett St/ Tiger Brennan Dr/ Mc | Minn St   |             |          |        |             |          |                       |          |          |
| 26 McMinn nwb left into Bennett      | 10.1      | 10          | ).9      | В      |             | 3        | 2.4                   | 3        | .0       |
| 27 McMinn nwb straight ahead         | 20.1      | 24          | 1.6      | С      | С           |          | 5.9                   | 7        | .1       |
| 28 McMinn nwb right into TBD         | 26.0 30.5 |             |          | С      | С           |          | 5.9                   | 7        | .1       |
| 29 TBD left into McMinn              | 24.8      | 21          | L.7      | С      | С           |          | 97.3                  | 11       | 6.5      |
| 30 TBD straight into Bennett         | 19.2      | 16          | 16.2 B   |        | В           |          | 98.0                  | 11       | 7.1      |
| 31 TBD right into McMinn             | 20.9      | 20          | ).1      | С      | С           |          | 16.8                  | 18       | 8.1      |
| 32 McMinn seb left into TBD          | 7.0       | 6           | .9       | А      | А           |          | 1.9                   | 2        | .2       |
| 33 McMinn seb straight ahead         | 22.5      | 28          | 3.2      | С      |             | 2        | 4.3                   | 5        | .3       |
| 34 McMinn seb right into Bennett     | 28.6      | 34          | 1.5      | С      | (           | 2        | 8.1                   | 10       | ).0      |
| 35 Bennett left into McMinn          | 7.1       | 7           | .0       | А      | /           | A        | 7.5                   | 8        | .3       |
| 36 Bennett straight into TBD         | 12.4 11.3 |             |          | В      |             | 3        | 21.4                  | 32       | .2       |
| 37 Bennett right into McMinn         | 29.4      | 30.8        |          | С      | С           |          | 9.7                   | 11       | 0        |
| All Vehicles                         | 17.4      | 15.7        |          | В      | В           |          | 98.0                  | 32.2     |          |

| 2031 PM Peak Hour                     | Ave                            | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |
|---------------------------------------|--------------------------------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|
|                                       | Jacobs                         | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |
| Ki3 Bennett St/ Tiger Brennan Dr/ Mcl | Vinn St                        |             |          |        |             |          |                       |          |          |
| 26 McMinn nwb left into Bennett       | 7.7                            | 7           | .7       | А      | ŀ           | A        | 2.9                   | 2        | .9       |
| 27 McMinn nwb straight ahead          | 20.8                           | 20          | ).8      | С      | (           |          | 15.9                  | 15       | 5.9      |
| 28 McMinn nwb right into TBD          | 26.9 26.9                      |             |          | С      | (           | 0        | 15.9                  | 15       | i.9      |
| 29 TBD left into McMinn               | 19.1 19.4                      |             |          | В      | В           |          | 42.8                  | 47       | '.7      |
| 30 TBD straight into Bennett          | 13.6                           | 13          | 3.8      | В      | В           |          | 43.1                  | 48       | 8.0      |
| 31 TBD right into McMinn              | 25.6                           | 26          | 5.7      | С      | С           |          | 5.1                   | 5        | .2       |
| 32 McMinn seb left into TBD           | 9.0                            | 9           | .4       | А      | A           |          | 4.2                   | 4        | .4       |
| 33 McMinn seb straight ahead          | 22.4                           | 22          | 2.4      | С      | (           |          | 4.0                   | 4        | .0       |
| 34 McMinn seb right into Bennett      | 27.8                           | 27          | 7.8      | С      | (           |          | 1.9                   | 1        | .9       |
| 35 Bennett left into McMinn           | 6.9                            | 6           | .9       | А      | ļ           | ł        | 6.6                   | 6        | .6       |
| 36 Bennett straight into TBD          | <i>ight into TBD</i> 15.1 17.2 |             |          |        |             | 3        | 64.5                  | 76       | 5.4      |
| 37 Bennett right into McMinn          | 23.6                           | 23.8        |          | С      | С           |          | 12.8                  | 12       | .9       |
| All Vehicles                          | 14.8                           | 15.7        |          | В      | В           |          | 64.5                  | 76       | i.4      |

Table 4 – Ki3: Bennett St/ Tiger Brennan Dr/ McMinn St Average Delay, Level of Service & Queue Assessment


Figure 17 and Table 4 above indicates the performance of this intersection would not be adversely affected by the alternate design and will continue to operate with acceptable delays on Bennett Street.

The provision of the Barneson Blvd link provides an opportunity to review the need for right turns at this intersection due to the available alternative routes which in turn would reduce overall delays through this intersection.



## 4.3 KI4: DALY ST/ MCMINN ST/ STUART HWY

This intersection has been modelled as a standalone intersection. Options 1 & 2 reflect the forecast changed traffic volumes and movements associated with the removal of the Barneson Blvd section between McMinn St and Cavanaugh St, as indicated in **Section 3** of this assessment but without right turns from Daly St into McMinn St due to modeling based on the current layout.



A summary of the assessed 'Average Delay', 'Level of Service' and '95% Back of Queue (m) is shown in Table 5 on the following page.



| 2031 AM Peak Hour                  | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |    |     |
|------------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|----|-----|
|                                    | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |    |     |
| Ki4 Daly St/ McMinn St/ Stuart Hwy |        |             |          |        |             |          |                       |          |          |    |     |
| 38 McMinn nwb left into Daly       | 10.2   | 23          | 3.1      | В      | B C         |          | 19.3                  | 53       | 8.0      |    |     |
| 39 McMinn nwb straight ahead       | 24.1   | 42.0        |          | С      | D           |          | 19.6                  | 32       | .8       |    |     |
| 40 McMinn nwb right into Stuart    | 29.7   | 47          | 7.6      | С      | [           | )        | 19.6                  | 32       | .8       |    |     |
| 41 Stuart left into McMinn         | 10.2   | 8           | .7       | B A    |             | A        | 36.4                  | 8        | .7       |    |     |
| 42 Stuart straight into Daly       | 21.3   | 28          | 3.2      | С      | (           | C        | 82.2                  | 25       | 5.9      |    |     |
| 43 Stuart right into McMinn        | 21.1   | 41          | 41.4     |        | [           | )        | 34.7                  | 69       | 0.0      |    |     |
| 44 McMinn seb left into Stuart     | 27.8   | 39          | 39.7     |        | 39.7        |          | [                     | )        | 27.4     | 20 | ).9 |
| 45 McMinn seb straight ahead       | 25.3   | 37          | 37.3     |        | 37.3        |          | [                     | )        | 27.4     | 20 | ).9 |
| 46 McMinn seb right into Daly      | 26.2   | 45          | 5.7      | С      | [           | )        | 16.6                  | 51       | 0        |    |     |
| 47 Daly left into McMinn           | 16.6   | 15.0        |          | В      | I           | 3        | 24.3                  | 50       | ).1      |    |     |
| 48 Daly straight into Stuart       | 11.1   | 9           | .4       | В      |             | A        | 24.3                  | 50       | ).1      |    |     |
| All Vehicles                       | 18.0   | 26.4        |          | В      | (           | C        | 82.2                  | 25       | 5.9      |    |     |

| 202 | 1 PM Peak Hour                 | Ave    | erage Delay | y (s)    | Le     | vel of Serv | ice      | 95% Back of Queue (m) |          |          |  |  |
|-----|--------------------------------|--------|-------------|----------|--------|-------------|----------|-----------------------|----------|----------|--|--|
| 203 | I FIVI FEAK HOUI               | Jacobs | Option 1    | Option 2 | Jacobs | Option 1    | Option 2 | Jacobs                | Option 1 | Option 2 |  |  |
| Ki4 | Daly St/ McMinn St/ Stuart Hwy |        |             |          |        |             |          |                       |          |          |  |  |
| 38  | McMinn nwb left into Daly      | 8.0    | 16          | 5.9      | А      | В           |          | 18.5                  |          |          |  |  |
| 39  | McMinn nwb straight ahead      | 30.2   | 20          | 4.5      | С      | F           |          | 41.5                  |          |          |  |  |
| 40  | McMinn nwb right into Stuart   | 36.3   | 131.7       |          | D      |             | F        | 88.5                  |          |          |  |  |
| 41  | Stuart left into McMinn        | 8.3    | 8.3 7.4     |          | А      | /           | 4        | 9.9                   |          |          |  |  |
| 42  | Stuart straight into Daly      | 15.4   | 18          | 18.4     |        | l           | В        | 60.7                  |          |          |  |  |
| 43  | Stuart right into McMinn       | 86.2   | 44          | 448.8    |        | l           | F        | 83.5                  |          |          |  |  |
| 44  | McMinn seb left into Stuart    | 38.7   | 59          | 9.0      | D      |             | E        | 24.6                  |          |          |  |  |
| 45  | McMinn seb straight ahead      | 36.3   | 56          | 56.6     |        | 56.6        |          |                       | E        | 24.6     |  |  |
| 46  | McMinn seb right into Daly     | 37.0   | 64          | 1.5      | D      |             | E        | 10.5                  |          |          |  |  |
| 47  | Daly left into McMinn          | 22.2   |             |          | С      | (           | C        | 75.3                  |          |          |  |  |
| 48  | Daly straight into Stuart      | 16.6   | 18          | 3.6      | В      |             | В        | 75.5                  |          |          |  |  |
| All | Vehicles                       | 24.8   | 63.5        |          | В      |             | В        | 88.5                  |          |          |  |  |

Table 5– Ki4: Daly St/ McMinn St/ Stuart Hwy Average Delay, Level of Service & Queue Assessment

Figure 17 and Table 5 above indicates that the layout of this intersection requires modifications as per that shown and used in the VISSUM model (i.e. Figure 2 on page 2) to accommodate the changed traffic movements and volumes indicated in the VISSUM model. Refer **Section 5** for further comment on these forecast volumes.



The PM peak hour assessment indicates that the Daly St/ McMinn St/ Stuart Hwy intersection would exceed acceptable capacity levels (i.e. Level of Service F) for the McMinn Street westbound right and straight-ahead movements as well as the Stuart Hwy straight ahead movement into Daly St.

The layout of this intersection has been modelled 'as is'. On a like for like basis, this is a shortcoming of the alternate recommendation to terminate Barneson at McMinn. Note however such pressures are not uncommon when considering a network in isolation. It is highly likely that modelling of this intersection as per the VISSUM model layout in the Jacobs Modelling Memo would address this.

Similar to the model of inter-connected review of Ki1 & Ki2, it is recommended that an interconnected review of Ki4 with Daily & Cavanagh St is considered, noting that should Ki4 become congested, drivers have the choice of a less disrupted journey via Cavanagh St or alternatively linking with Barneson Blvd and exiting to the City's northwest via Woolner Rd.

It is beyond the scope of this initial desktop study to prepare and design detailed traffic signal models for these intersections, particularly as these details are not included in the Jacobs Modelling memo.



A comparison between the current layout and VISSUM model layout is provided as Figure 19 below.

Figure 19 – Ki4: Daly St/ McMinn St/ Stuart Hwy Existing Layout v VISSUM layout

SIDRA Intersection summary reports are included in Appendix A.



#### 4.4 KI5: BARNESON BLVD/ CAVENAGH ST

This intersection has been modelled as part of this assessment as it is not an intersection in the alternate design, i.e. Barneson Boulevard terminates at McMinn Street and does not extend to Cavenagh St.

The VISUM model within the Jacobs Modelling Memo indicates expected average delays of 0 and 1 second for through traffic on Cavanaugh Street during peak hours, as shown in the extract provided as Table 6 below.

| Movement               | Vehicles      | Ave Delay<br>(s) | LOS    | Ave Q | Max Q   | WHITFIELD ST       |
|------------------------|---------------|------------------|--------|-------|---------|--------------------|
| AM Peak Hour Ba        | rneson Boulev | ard/ Cavenagh    | Street |       |         |                    |
| Barneson Blvd NE left  | 108           | 22               | В      | 9     | 50      |                    |
| Barneson Blvd NE right | 277           | 24               | В      | 9     | 50      | BUS BAY            |
| Cavenagh St NW left    | 120           | 10               | Α      | 3     | 35      |                    |
| Cavenagh St NW through | 203           | 1 -              | A      | 0     | 0       |                    |
| Cavenagh St SE through | 296           | 0 🛰              | Α      | 0     | 0       | Woelworths         |
| Cavenagh St SE right   | 294           | 15               | В      | 20    | 29      | Darwin City        |
| Overall LOS            | 1299          |                  | Α      |       | $\succ$ |                    |
| PM Peak Hour Ba        | rneson Boulev | ard/ Cavenagh    | Street |       |         |                    |
| Barneson Blvd NE left  | 66            | 36               | С      | 14    | 79      |                    |
| Barneson Blvd NE right | 677           | 19               | В      | 14    | 79      |                    |
| Cavenagh St NW left    | 103           | 22               | В      | 10    | 38      |                    |
| Cavenagh St NW through | 223           | 1                | A      | 0     | 0       | POTENTIAL BUS BAYS |
| Cavenagh St SE through | 317           | 0 /              | Α      | 0     | 0       |                    |
| Cavenagh St SE right   | 364           | 7                | Α      | 10    | 29      | SEARCY ST          |
| Overall LOS            | 1750          |                  | Α      |       |         |                    |

Table 6 – Jacobs VISSUM model intersection outputs for Ki5: Barneson Blvd/ Cavenagh St

It is difficult to associate the above 'Average Delay' data (and hence all other data) with the proposal to introduce traffic signals at this location, particularly as it is proposed to provide pedestrian phases across Cavenagh St. This suggests that delays associated with pedestrian movements in the CBD have not been considered within the VISSUM model and hence further questions the 'robustness' of this model for this proposal.



## 5 FORECASTING TRIP VOLUMES

This Jacobs Modelling Memo does not provide any details indicating how traffic generation to and from the Darwin CBD is assigned to the three major access roads, i.e. Stuart Hwy, Tiger Brennan Drive and the new Barneson Boulevard link, other than to refer to previous VISSUM models.

The Jacobs Modelling Memo indicates that 2031 volumes were obtained by applying 1.5% per annum growth to the previous 2027 model. It does not indicate whether the same simplistic approach was applied to obtaining the previous 2027 volumes.

Forecasting traffic volumes beyond the current 5-year period (i.e. beyond 2023) is fraught with danger due to the introduction of autonomous vehicles in this time frame. Researchers argue that the disruption brought about by autonomous vehicles, including mobility-as-a-service could double or triple road capacity due to its ability to operate synchronously and with greatly-reduced spacing compared to manually-driven vehicles (Mulligan C. (2014) ICT & the Future of Transport: part 2/8 industry).

In addition to the advent of disruptive autonomous vehicles, the use of straight line growth projections with no regard for limits of capacity of the selected routes and the resulting attractiveness of alternative routes is also fraught with danger. For example, applying straight line growth of 1.5% per annum to the recorded daily traffic volumes on Stuart Hwy and Tiger Brennan Drive at the nearest data collection points to the CBD in 1994 results in a significant over-estimation of traffic volumes on Stuart Hwy and under-estimation of traffic volumes on Tiger Brennan Drive for 2016, as shown in Figure 20 below. This is further complicated by the fact that traffic growth is applied to peak hour volumes and there is much greater flexibility in managing peak hour volumes than there is in managing daily volumes.

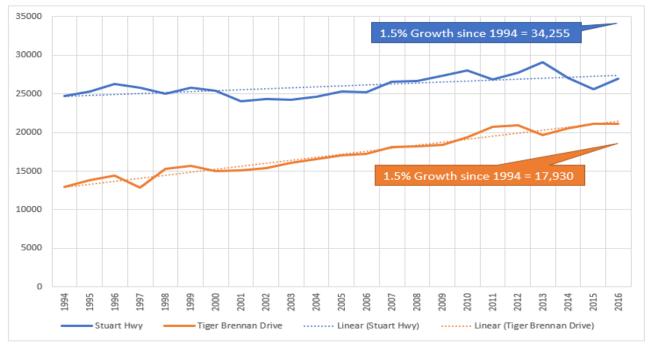


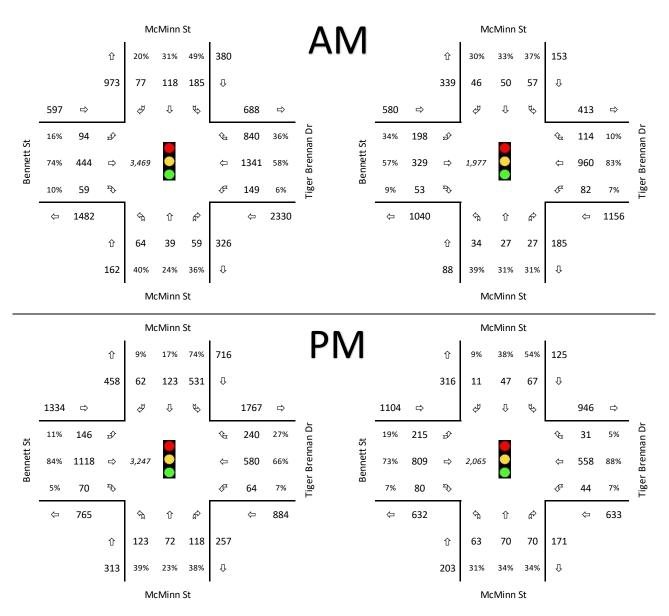

Figure 20 – Actual daily traffic volumes on Stuart Hwy and TBD north of the CBD since 1994

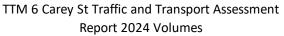


A further factor to consider in forecasting volumes is the influence of induced demand. This is particularly relevant to the Barneson Boulevard proposal as it is designed to accommodate higher volumes of traffic into and out of the CBD. This in turn is likely to encourage higher volumes of traffic into and out of the CBD as those drivers who previously found it difficult to access the CBD and used alternative forms of transport, or simply avoided peak hours, will now find it more attractive to drive to and from the CBD during peak hours.

Page 8 of the Jacobs Modelling Memo indicates that a 60%/ 40% split has been used for inbound traffic on Tiger Brennan Drive as it approaches Barneson Boulevard, i.e. 60% continue left towards Bennett St/ McMinn St and 40% turn into Barneson Blvd. There is no indication how this split was determined.

In June 2013, Tonkin Consulting published a comprehensive "Darwin CBD Parking Strategy" Report. This report included origin-destination data based on 1,000 vehicle number plates. This data would assist in determining the attractiveness of each route into the City and may provide a better estimate of the 60%/ 40% split used.


A review of a previous traffic models for the Bennett St/ McMinn St/ Tiger Brennan Drive intersection has revealed significant differences in forecast traffic volumes that raises concerns with the validity of the following statements in Section 2.4 of the Jacobs Modelling Memo:


"The 2012 Base Year Darwin CBD VISSIM model was calibrated and validated to a high level against observed traffic data and conditions, providing a robust base for the future scenario assessment undertaken for this study. The good level of calibration achieved gives confidence that the model provides good replication of travel conditions and driver behaviour, and that the traffic assignment through the network is sensible."

"The 2031 forecast model was developed based on known planned development for the CBD as well as travel demands from the Darwin Strategic Traffic model, which itself is based on up-to-date land use and planning data forecasts for Greater Darwin."

Earlier models, as well as SCATS data and manual traffic surveys undertaken in Bennett Street, indicate higher traffic volumes in this street than indicated in the 2031 VISSUM model. It is acknowledged that the provision of the Barneson Boulevard link will draw some traffic away from the TBD approach to this intersection, however, the traffic generators on Bennett St (the extension of TBD over McMinn St) have not diminished and the current proposal to develop a 450-space car park in Civic Square as well as other traffic generating developments at this end of the CBD will result in an increase in traffic to and from Bennett Street, not a decrease. A comparison between an earlier model and the VISSUM model is provided as Figure 21 on the following page.







Jacobs Modelling Memo VISSUM 2031 Volumes

Figure 21 – Comparison of Ki3 (Bennett St/ McMinn St/ TBD) intersection models



In addition to the preceding modelling issues, there is a proposal for a link road to be provided between Bagot Road and Tiger Brennan Dr that would significantly change the proportion of traffic using each access route. This proposal is known as the Snell St link and is shown, along with the Barneson Blvd link, in Figure 22 below.

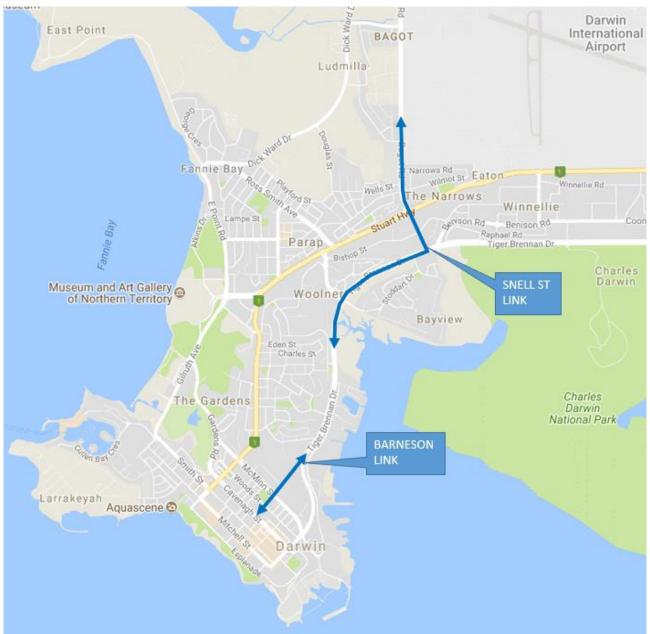



Figure 22 – Barneson Link & Snell St Link



## 6 WOODS STREET

Woods Street currently carries traffic between Daly Street and Bennett Street. The Barneson Boulevard project will result in Woods Street being separated into two sections with a cul-de-sac on the northwest side and restricted left-in/ left-out only turns on the southeast side of Barneson Boulevard, as shown in the composite plan provided as Figure 23 below.



Figure 23 – Composite proposal plan showing Woods Street treatment

In addition to reducing activity in Woods Street, there will be a reduction in connectivity and accessibility and a need to review each side road connection with Woods Street to ensure that priority is given to the prevalent flow. For example, the intersection of Lindsay St/ Woods St in Figure 23 above would require a change in the STOP control so that Lindsay Street becomes the through road.

The Jacobs Modelling Memo includes a VISSUM model diagram showing "PM Peak left turn from Woods Street into Barneson Boulevard" (page 24) that redirects approximately 450 vehicles in an hour from Woods Street southeast of Barneson Boulevard into Barneson Boulevard (left turn) and then a right turn into Cavenagh Street. This model is reproduced as Figure 24 on the following page. The Jacobs Modelling Memo



does not assess the impact of these significant changes on the road network other than in terms of traffic volumes, i.e.:

"There is a relatively high volume of traffic turning right from Barneson Boulevard onto Cavenagh Street (around 700 vehicles). Of this traffic, around 60% originates from Woods Street (developments of Woods Street and areas to the east of Woods Street) and the remainder from areas north of Barneson Boulevard."

The above statement confirms that the proposal will have a significant impact on both Woods Street and Cavenagh Street. The alternate proposal to terminate Barneson Boulevard at McMinn Street would have little or no impact on Woods Street or Cavenagh Street.

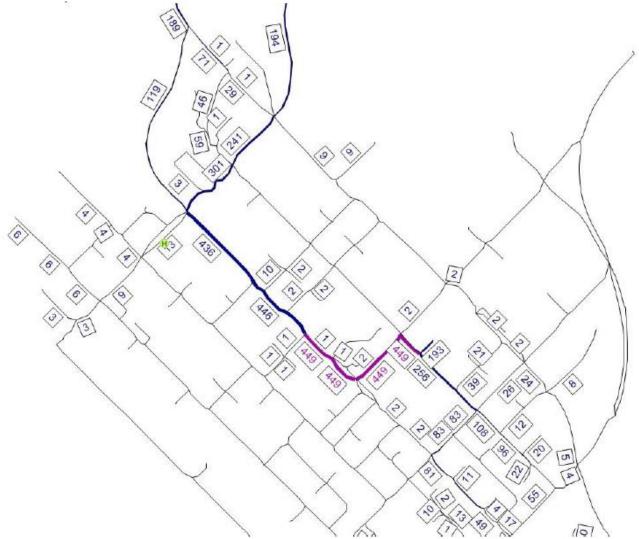



Figure 24 – PM peak left turn from Woods Street onto Barneson Boulevard (Jacobs Modelling Memo extract)



## 7 PUBLIC TRANSPORT

Public transport to and from the CBD is an integral part of any CBD traffic study. Whilst page 10 of the Jacobs Modelling Memo discusses concepts for dedicated right and left turn lanes at some signalised intersections and the provision of segregated bus lanes, referred to as Bus Rapid Transit (RPT) in the Memo, there is no mention of the proposal to relocate current bus terminus points on Cavenagh St (near Woolworths) and the Bus Interchange from the Civic Precinct to a location close to the proposed Cavenagh St/ Barneson Blvd intersection and the impact this will have on pedestrian movements in this area as well as travel times and inner city traffic flows.



## 8 FINDINGS

This review note has identified and documented a number of concerns with the information and data included and used in the Jacobs Modelling Memo and considers it appropriate that a more detailed and comprehensive modelling report is prepared for what is a significant transport infrastructure project.

The principal areas of concern are:

- Inconsistencies between the VISSUM model, the SIDRA models and the proposed layout;
- 'Lost' traffic within the model on sections of streets without development (e.g. TBD between Barneson & McMinn);
- Lack of an integrated comparison of impacts on Cavanaugh St traffic within the Goyder grid;
- The use of 1.5% linear traffic growth per annum to the year 2031 without considering:
  - capacity limits of streets and intersections;
  - $\circ$  the disruptive impact of autonomous vehicles within the next 5 years (i.e. by 2023); and
  - o significant traffic generating developments within the CBD.
- The adoption of generic 60%/ 40 % trip assignment without considering:
  - recent CBD origin/ destination parking survey data;
  - the need to ensure that this does not result in a reduction on CBD streets where the traffic generators have not reduced (e.g. Bennett Street); and
  - that current parking supply is known to be 1,343 (assuming that the 450 underground Civic Centre car park simply replaces the existing Parliament & Supreme court above ground provisions);
- The apparent lack of inclusion of pedestrian crossing demands and associated delays in the VISSUM model (e.g. Ki 5);
- The lack of assessment of the proposal to relocate current bus terminus points on Cavenagh St (near Woolworths) and the Bus Interchange from near the Civic Centre to a location close to the Cavenagh St/ Barneson Blvd intersection and the impact this will have on pedestrian movements in this area as well as travel times and inner-city traffic flows;
- The lack of consideration of induced traffic (i.e. encouraging more vehicles into the CBD instead of encouraging greater use of alternative modes such as cycling and public transport; and
- The lack of consideration of the impact of other road network proposals (e.g. Snell St link);

In addition to the above, the report only assesses the impact of a given design and hence does not allow for the comparative assessment of other options such as:

• Terminating Barneson Boulevard at McMinn Street (connecting to the arterial road network and negating the need to impact on Woods Street and <u>Cavenagh St</u>);



- Providing roundabout control instead of traffic signal control at Barneson Blvd/ McMinn Street (reducing delays and accommodating the desire for U turns generated by developments on both sides of Barneson Blvd);
- Changing the alignment of Barneson Blvd at Tiger Brennan Drive so that it is the terminating road (reflecting the assessed higher demand for through traffic on Tiger Brennan Drive).

Although this is a fairly basic preliminary assessment due to limited data and resources, it has identified that there are benefits to be had in adopting the 'alternate' design, namely reduced delays on the road network, reduced travel times, reduced impact on Woods Street and Cavenagh Street and a more logical arterial road network that accommodates traffic to and from the CBD but does not encourage it to travel through the CBD.

In summary, a more comprehensive modelling report of various options and layouts is considered warranted for such a significant transport infrastrucute project than the failry brief Jacobs Modelling Memo that assesses a single design option.

David Wilkins

Principal & Senior Traffic Engineer – i3 consultants WA Accredited Senior Road Safety Auditor - Crash Investigation Team Leader - Roadworks Traffic Manager T (08) 9467 7478 | <u>www.i3consultants.com</u> | <u>LinkedIn</u> ABN 53 745 566 923



APPENDIX A SIDRA DATA AND REPORTS

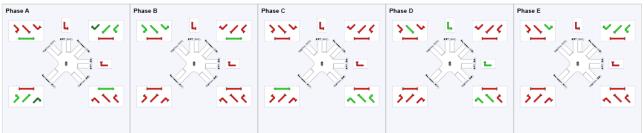



Figure 25 – Ki1 Barneson/ McMinn traffic signal phases

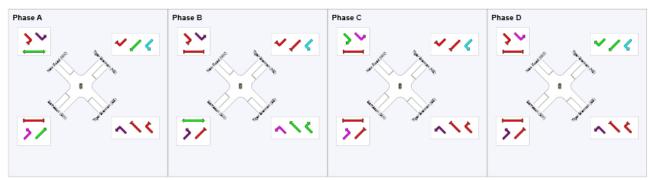



Figure 26 – Ki2 Barneson/ Tiger Brennan traffic signal phases

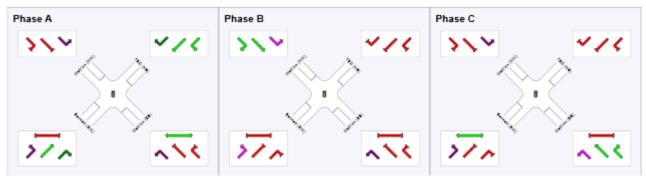



Figure 27 – Ki3 Bennett/ McMinn/ Tiger Brennan traffic signal phases

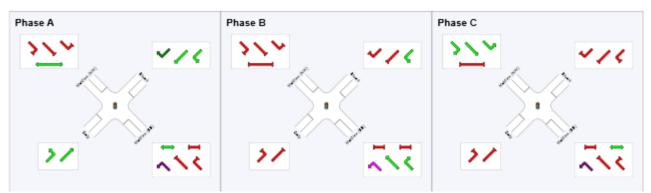



Figure 28 – Ki4 Daly/ McMinn/ Stuart traffic signal phases



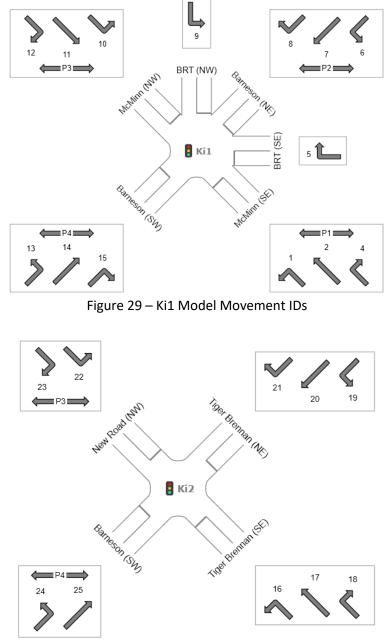



Figure 30 – Ki2 Model Movement IDs



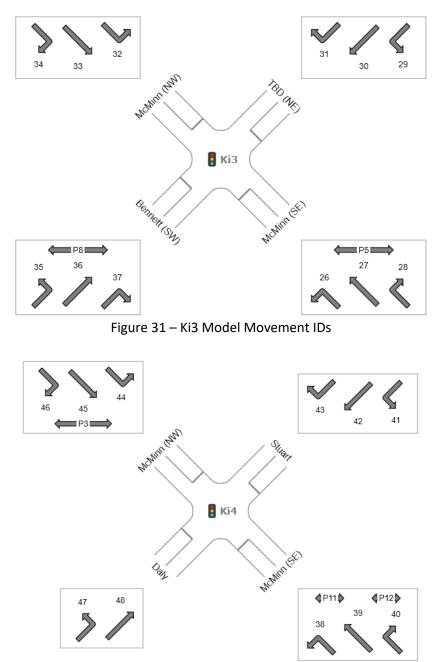



Figure 32 – Ki4 Model Movement IDs



## **MOVEMENT SUMMARY**

Site: Ki1 Barneson/ McMinn Jacobs 2031 AM

## <sup>∲∲</sup> Network: Jacobs AM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| Mover    | nent Perf   | ormance   | e - Vehi | icles_ |           |           |         |          |          |          |        |           |         |
|----------|-------------|-----------|----------|--------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
|          | ODMo        | Demano    |          |        | Flows     | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |             | Total     | HV       | Total  | HV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |             | veh/h     | %        | veh/h  | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| SouthE   | ast: McMin  | n (SE)    |          |        |           |           |         |          |          |          |        |           |         |
| 1        | L2          | 5         | 1.0      | 5      | 1.0       | 0.340     | 30.3    | LOS C    | 8.3      | 58.5     | 0.78   | 0.66      | 35.2    |
| 2        | T1          | 225       | 1.0      | 225    | 1.0       | 0.340     | 25.8    | LOS C    | 8.3      | 58.5     | 0.78   | 0.66      | 37.8    |
| 4        | R2          | 234       | 1.0      | 234    | 1.0       | 0.422     | 47.3    | LOS D    | 5.3      | 37.7     | 0.95   | 0.78      | 23.2    |
| Approa   | ch          | 464       | 1.0      | 464    | 1.0       | 0.422     | 36.7    | LOS D    | 8.3      | 58.5     | 0.87   | 0.72      | 31.1    |
| East: B  | RT (SE)     |           |          |        |           |           |         |          |          |          |        |           |         |
| 5        | R2          | 8         | 100.0    | 8      | 100.<br>0 | 0.055     | 46.7    | LOS D    | 0.4      | 4.8      | 0.89   | 0.68      | 31.1    |
| Approa   | ch          | 8         | 100.0    | 8      | 100.<br>0 | 0.055     | 46.7    | LOS D    | 0.4      | 4.8      | 0.89   | 0.68      | 31.1    |
| NorthE   | ast: Barnes | son (NE)  |          |        |           |           |         |          |          |          |        |           |         |
| 6        | L2          | 151       | 1.0      | 151    | 1.0       | 0.501     | 19.8    | LOS B    | 7.1      | 50.0     | 0.54   | 0.59      | 38.7    |
| 7        | T1          | 424       | 1.0      | 424    | 1.0       | 0.501     | 14.9    | LOS B    | 7.1      | 50.3     | 0.53   | 0.49      | 37.0    |
| 8        | R2          | 182       | 1.0      | 182    | 1.0       | 0.689     | 30.8    | LOS C    | 6.8      | 48.0     | 0.91   | 0.79      | 33.2    |
| Approa   | ch          | 757       | 1.0      | 757    | 1.0       | 0.689     | 19.7    | LOS B    | 7.1      | 50.3     | 0.63   | 0.58      | 36.2    |
| North: I | BRT (NW)    |           |          |        |           |           |         |          |          |          |        |           |         |
| 9        | L2          | 16        | 100.0    | 16     | 100.<br>0 | 0.104     | 47.3    | LOS D    | 0.7      | 9.2      | 0.90   | 0.70      | 31.2    |
| Approa   | ch          | 16        | 100.0    | 16     | 100.<br>0 | 0.104     | 47.3    | LOS D    | 0.7      | 9.2      | 0.90   | 0.70      | 31.2    |
| NorthW   | /est: McMir | nn (NW)   |          |        |           |           |         |          |          |          |        |           |         |
| 10       | L2          | 266       | 1.0      | 266    | 1.0       | 0.899     | 52.5    | LOS D    | 16.7     | 118.0    | 1.00   | 1.13      | 22.0    |
| 11       | T1          | 338       | 1.0      | 338    | 1.0       | 0.899     | 45.6    | LOS D    | 17.0     | 119.7    | 1.00   | 1.11      | 31.4    |
| 12       | R2          | 399       | 1.0      | 399    | 1.0       | 0.899     | 58.1    | LOS E    | 17.0     | 119.7    | 1.00   | 1.05      | 25.9    |
| Approa   | ch          | 1003      | 1.0      | 1003   | 1.0       | 0.899     | 52.4    | LOS D    | 17.0     | 119.7    | 1.00   | 1.09      | 27.1    |
| SouthV   | Vest: Barne | eson (SW) |          |        |           |           |         |          |          |          |        |           |         |
| 13       | L2          | 71        | 1.0      | 71     | 1.0       | 0.696     | 50.5    | LOS D    | 9.7      | 68.5     | 1.00   | 0.86      | 28.1    |
| 14       | T1          | 331       | 1.0      | 331    | 1.0       | 0.696     | 45.9    | LOS D    | 9.9      | 69.6     | 1.00   | 0.86      | 16.7    |
| 15       | R2          | 36        | 1.0      | 36     | 1.0       | 0.211     | 46.7    | LOS D    | 1.6      | 11.4     | 0.91   | 0.73      | 28.5    |
| Approa   |             | 437       | 1.0      | 437    | 1.0       | 0.696     | 46.7    | LOS D    | 9.9      | 69.6     | 0.99   | 0.85      | 20.6    |
| All Veh  | icles       | 2685      | 1.9      | 2685   | 1.9       | 0.899     | 39.5    | LOS D    | 17.0     | 119.7    | 0.87   | 0.84      | 28.9    |

| Movement Performance - Pedestrians |                         |                |                  |                     |                          |          |                 |                        |
|------------------------------------|-------------------------|----------------|------------------|---------------------|--------------------------|----------|-----------------|------------------------|
| Mov<br>ID                          | Description             | Demand<br>Flow | Average<br>Delay | Level of<br>Service | Average Back of<br>Queue |          | Prop.<br>Queued | Effective<br>Stop Rate |
|                                    |                         |                |                  |                     | Pedestrian               | Distance |                 |                        |
|                                    |                         | ped/h          | sec              |                     | ped                      | m        |                 | per ped                |
| P1                                 | SouthEast Full Crossing | 53             | 44.3             | LOS E               | 0.1                      | 0.1      | 0.94            | 0.94                   |
| P2                                 | NorthEast Full Crossing | 53             | 44.3             | LOS E               | 0.1                      | 0.1      | 0.94            | 0.94                   |
| P3                                 | NorthWest Full Crossing | 53             | 44.3             | LOS E               | 0.1                      | 0.1      | 0.94            | 0.94                   |
| P4                                 | SouthWest Full Crossing | 53             | 44.3             | LOS E               | 0.1                      | 0.1      | 0.94            | 0.94                   |
| All Pedestrians                    |                         | 211            | 44.3             | LOS E               |                          |          | 0.94            | 0.94                   |



Site: Ki2 Barneson/ TBD Jacobs 2031 AM

### <sup>∲∲</sup> Network: Jacobs AM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| wove    | ement Per   | rormance   | - veni | cies  |     |           |         |          |          |          |        |           |         |
|---------|-------------|------------|--------|-------|-----|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II  | O ODMo      | Demand     |        |       |     | Deg. Satn | Average | Level of |          | of Queue | Prop.  | Effective | Average |
|         |             | Total      | HV     | Total | HV  |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |             | veh/h      | %      | veh/h | %   | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: Tiger | Brennan (S | E)     |       |     |           |         |          |          |          |        |           |         |
| 16      | L2          | 26         | 1.0    | 26    | 1.0 | 0.028     | 8.5     | LOS A    | 0.3      | 2.0      | 0.30   | 0.61      | 51.1    |
| 17      | T1          | 6          | 1.0    | 6     | 1.0 | 0.506     | 35.9    | LOS D    | 9.6      | 67.9     | 0.92   | 0.81      | 35.8    |
| 18      | R2          | 442        | 1.0    | 442   | 1.0 | 0.506     | 41.5    | LOS D    | 9.6      | 67.9     | 0.92   | 0.81      | 38.5    |
| Appro   | ach         | 475        | 1.0    | 475   | 1.0 | 0.506     | 39.6    | LOS D    | 9.6      | 67.9     | 0.88   | 0.80      | 38.8    |
| North   | East: Tiger | Brennan (N | E)     |       |     |           |         |          |          |          |        |           |         |
| 19      | L2          | 1078       | 1.0    | 1078  | 1.0 | 0.462     | 8.8     | LOS A    | 13.9     | 98.3     | 0.14   | 0.56      | 54.1    |
| 20      | T1          | 711        | 1.0    | 711   | 1.0 | 0.462     | 15.8    | LOS B    | 14.2     | 100.4    | 0.67   | 0.62      | 37.7    |
| 21      | R2          | 1          | 1.0    | 1     | 1.0 | 0.010     | 54.5    | LOS D    | 0.0      | 0.4      | 0.96   | 0.59      | 24.9    |
| Appro   | ach         | 1789       | 1.0    | 1789  | 1.0 | 0.462     | 11.6    | LOS B    | 14.2     | 100.4    | 0.35   | 0.58      | 49.9    |
| North\  | Nest: New   | Road (NW)  |        |       |     |           |         |          |          |          |        |           |         |
| 22      | L2          | 1          | 1.0    | 1     | 1.0 | 0.001     | 12.3    | LOS B    | 0.0      | 0.1      | 0.42   | 0.58      | 45.2    |
| 23      | R2          | 21         | 1.0    | 21    | 1.0 | 0.190     | 56.8    | LOS E    | 1.0      | 7.3      | 0.98   | 0.70      | 11.2    |
| Appro   | ach         | 22         | 1.0    | 22    | 1.0 | 0.190     | 54.7    | LOS D    | 1.0      | 7.3      | 0.95   | 0.70      | 12.4    |
| South   | West: Barn  | eson (SW)  |        |       |     |           |         |          |          |          |        |           |         |
| 24      | L2          | 14         | 1.0    | 14    | 1.0 | 0.009     | 5.9     | LOS A    | 0.0      | 0.2      | 0.10   | 0.57      | 49.0    |
| 25      | T1          | 782        | 1.0    | 782   | 1.0 | 0.505     | 36.6    | LOS D    | 18.6     | 131.3    | 0.99   | 0.86      | 33.5    |
| Appro   | ach         | 796        | 1.0    | 796   | 1.0 | 0.505     | 36.0    | LOS D    | 18.6     | 131.3    | 0.98   | 0.86      | 33.6    |
| All Vel | hicles      | 3082       | 1.0    | 3082  | 1.0 | 0.506     | 22.5    | LOS C    | 18.6     | 131.3    | 0.60   | 0.69      | 42.9    |
|         |             |            |        |       |     |           |         |          |          |          |        |           |         |

| Move    | ment Performance - Pedestria | ans    |       |          |            |          |                  |         |  |
|---------|------------------------------|--------|-------|----------|------------|----------|------------------|---------|--|
| Mov     | Description                  | Demand |       | Level of |            |          | Prop. Effective  |         |  |
| ID      | Description                  | Flow   | Delay | Service  | Que        | eue      | Queued Stop Rate |         |  |
|         |                              |        |       |          | Pedestrian | Distance |                  |         |  |
|         |                              | ped/h  | sec   |          | ped        | m        |                  | per ped |  |
| P3      | NorthWest Full Crossing      | 53     | 21.8  | LOS C    | 0.1        | 0.1      | 0.66             | 0.66    |  |
| P4      | SouthWest Full Crossing      | 53     | 41.5  | LOS E    | 0.1        | 0.1      | 0.91             | 0.91    |  |
| All Ped | lestrians                    | 105    | 31.7  | LOS D    |            |          | 0.79             | 0.79    |  |



Site: Ki1 Barneson/ McMinn Jacobs 2031 PM

### <sup>∲∲</sup> Network: Jacobs PM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| v    Total<br>veh/h    HV    Total<br>%    HV    Total<br>%    HV    Delay<br>%    Service<br>sec    Vehicles<br>veh    Distance<br>m    Queued<br>m    Stop Rate<br>per veh      1    L2    1    1.0    1    1.0    0.751    42.5    LOS D    18.3    129.4    0.98    0.89      2    T1    584    1.0    584    1.0    0.751    40.0    LOS D    18.3    129.4    0.98    0.89      4    R2    288    1.0    288    1.0    0.751    51.3    LOS D    18.3    129.4    0.98    0.89      Approach    874    1.0    874    1.0    0.751    43.8    LOS D    18.3    129.4    0.99    0.89      East: BRT (SE)    5    R2    18    100.0    18    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      0    0    0    0.275    58.8    LOS E    0.9    12.1    0.99                      | Average |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| v    Total<br>veh/h    HV    Total<br>%    HV    Total<br>%    HV    Delay<br>%    Service<br>sec    Vehicles<br>veh    Distance<br>m    Queued<br>per veh    Stop Rate<br>per veh      SouthEast: McMinn (SE)    1    1.0    1    1.0    0.751    42.5    LOS D    18.3    129.4    0.98    0.89      2    T1    584    1.0    584    1.0    0.751    40.0    LOS D    18.3    129.4    0.98    0.89      4    R2    288    1.0    288    1.0    0.751    51.3    LOS D    18.3    129.4    0.98    0.89      Approach    874    1.0    874    1.0    0.751    43.8    LOS D    18.3    129.4    0.99    0.89      East: BRT (SE)    5    R2    18    100.0    18    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      0    0    0    0.275    58.8    LOS E    0.9    12.1    0.99 |         |
| SouthEast: McMinn (SE)    1  L2  1  1.0  1  1.0  0.751  42.5  LOS D  18.3  129.4  0.98  0.89    2  T1  584  1.0  584  1.0  0.751  40.0  LOS D  18.3  129.4  0.98  0.89    2  T1  584  1.0  0.751  40.0  LOS D  18.3  129.4  0.98  0.89    4  R2  288  1.0  288  1.0  0.751  51.3  LOS D  13.4  94.4  1.00  0.89    Approach  874  1.0  874  1.0  0.751  43.8  LOS D  18.3  129.4  0.99  0.89    East: BRT (SE)  5  R2  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    0  0  0  0  0 <td>Speed</td>                                                                                                                                                                                             | Speed   |
| 1  L2  1  1.0  1  1.0  0.751  42.5  LOS D  18.3  129.4  0.98  0.89    2  T1  584  1.0  584  1.0  0.751  40.0  LOS D  18.3  129.4  0.98  0.89    4  R2  288  1.0  288  1.0  0.751  51.3  LOS D  18.3  129.4  0.98  0.89    Approach  874  1.0  288  1.0  0.751  51.3  LOS D  13.4  94.4  1.00  0.89    Approach  874  1.0  874  1.0  0.751  43.8  LOS D  18.3  129.4  0.99  0.89    East: BRT (SE)  5  R2  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    0  0  0  0  0  0  0.275                                                                                                                                                                                                               | km/h    |
| 2  T1  584  1.0  584  1.0  0.751  40.0  LOS D  18.3  129.4  0.98  0.89    4  R2  288  1.0  288  1.0  0.751  51.3  LOS D  13.4  94.4  1.00  0.89    Approach  874  1.0  874  1.0  0.751  43.8  LOS D  18.3  129.4  0.99  0.89    East: BRT (SE)  5  R2  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    0  0  0  0  0  18.0  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    0  0  0  0  0  0  0                                                                                                                                                                                                                        |         |
| 4  R2  288  1.0  288  1.0  0.751  51.3  LOS D  13.4  94.4  1.00  0.89    Approach  874  1.0  874  1.0  0.751  43.8  LOS D  13.4  94.4  1.00  0.89    East: BRT (SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.0    |
| Approach    874    1.0    874    1.0    0.751    43.8    LOS D    18.3    129.4    0.99    0.89      East: BRT (SE)    5    R2    18    100.0    18    100.    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      Approach    18    100.0    18    100.    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      Approach    18    100.0    18    100.    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      NorthEast: Barneson (NE)    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    <                                                                                                             | 33.3    |
| East: BRT (SE)    5  R2  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    NorthEast: Barneson (NE)  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 <td< td=""><td>22.5</td></td<>                                                                                                                                                                                                                                                                                                          | 22.5    |
| 5  R2  18  100.0  18  100.0  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    Approach  18  100.0  18  100.  0.275  58.8  LOS E  0.9  12.1  0.99  0.71    NorthEast: Barneson (NE)  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                  | 30.3    |
| O      Approach    18    100.0    18    100.    0.275    58.8    LOS E    0.9    12.1    0.99    0.71      NorthEast: Barneson (NE)    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 <td></td>                                                                                                                                                                                         |         |
| 0<br>NorthEast: Barneson (NE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 6 L2 66 1.0 66 1.0 0.244 17.5 LOS B 3.6 25.3 0.44 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.2    |
| 7 T1 289 1.0 289 1.0 0.244 10.9 LOS B 3.6 25.3 0.38 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.8    |
| 8 R2 274 1.0 274 1.0 0.696 32.1 LOS C 10.2 71.9 0.97 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.8    |
| Approach    629    1.0    629    1.0    0.696    20.8    LOS C    10.2    71.9    0.65    0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.0    |
| North: BRT (NW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 9 L2 14 100.0 14 100. 0.210 58.3 LOS E 0.7 9.2 0.98 0.70<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.7    |
| Approach 14 100.0 14 100. 0.210 58.3 LOS E 0.7 9.2 0.98 0.70<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.7    |
| NorthWest: McMinn (NW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 10 L2 375 1.0 375 1.0 0.598 20.3 LOS C 9.3 65.5 0.88 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.2    |
| 11 T1 78 1.0 78 1.0 0.366 21.8 LOS C 3.8 26.9 0.91 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.6    |
| 12 R2 171 1.0 171 1.0 0.366 38.9 LOS D 5.1 35.8 0.92 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.8    |
| Approach    623    1.0    623    1.0    0.598    25.6    LOS C    9.3    65.5    0.90    0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.3    |
| SouthWest: Barneson (SW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 13 L2 121 1.0 121 1.0 0.818 55.1 LOS E 12.2 85.8 1.00 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.8    |
| 14 T1 348 1.0 348 1.0 0.818 50.5 LOS D 12.4 87.9 1.00 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.6    |
| 15 R2 20 1.0 20 1.0 0.102 45.4 LOS D 0.9 6.2 0.89 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.9    |
| Approach    489    1.0    489    1.0    0.818    51.4    LOS D    12.4    87.9    1.00    0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| All Vehicles    2647    2.2    2647    2.2    0.818    35.6    LOS D    18.3    129.4    0.89    0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0    |

| Move      | ment Performance - Pedestria | ins            |                  |                     |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|---------------------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay | Level of<br>Service |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |                     | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |                     | ped        | m        |                 | per ped                |
| P1        | SouthEast Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| P2        | NorthEast Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| P3        | NorthWest Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| P4        | SouthWest Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| All Ped   | All Pedestrians              |                | 44.3             | LOS E               |            |          | 0.94            | 0.94                   |



Site: Ki2 Barneson/ TBD Jacobs 2031 PM

### <sup>∲∲</sup> Network: Jacobs PM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| WOVE   | ement Per     | rormance    | - ven | icies_ |     |           |         |                     |          |          |                 |                        |         |
|--------|---------------|-------------|-------|--------|-----|-----------|---------|---------------------|----------|----------|-----------------|------------------------|---------|
| Mov II | D ODMo        | Demand      |       |        |     | Deg. Satn | Average | Level of<br>Service |          | of Queue | Prop.<br>Queued | Effective<br>Stop Rate | Average |
|        |               | Total       | HV    | Total  | HV  |           | Delay   | Service             | Vehicles | Distance | Queueu          |                        | Speed   |
|        |               | veh/h       | %     | veh/h  | %   | v/c       | sec     |                     | veh      | m        |                 | per veh                | km/h    |
| South  | East: Tiger   | Brennan (SE | E)    |        |     |           |         |                     |          |          |                 |                        |         |
| 16     | L2            | 87          | 1.0   | 87     | 1.0 | 0.078     | 7.5     | LOS A               | 0.8      | 5.5      | 0.26            | 0.62                   | 52.0    |
| 17     | T1            | 2           | 1.0   | 2      | 1.0 | 0.796     | 36.9    | LOS D               | 22.4     | 158.0    | 0.98            | 0.91                   | 35.4    |
| 18     | R2            | 937         | 1.0   | 937    | 1.0 | 0.796     | 42.5    | LOS D               | 22.4     | 158.0    | 0.98            | 0.91                   | 38.2    |
| Appro  | ach           | 1026        | 1.0   | 1026   | 1.0 | 0.796     | 39.5    | LOS D               | 22.4     | 158.0    | 0.92            | 0.88                   | 38.8    |
| North  | East: Tiger I | Brennan (NE | =)    |        |     |           |         |                     |          |          |                 |                        |         |
| 19     | L2            | 727         | 1.0   | 727    | 1.0 | 0.354     | 7.6     | LOS A               | 9.6      | 67.6     | 0.07            | 0.54                   | 54.8    |
| 20     | T1            | 529         | 1.0   | 529    | 1.0 | 0.354     | 19.6    | LOS B               | 9.7      | 68.4     | 0.70            | 0.62                   | 35.0    |
| 21     | R2            | 23          | 1.0   | 23     | 1.0 | 0.209     | 56.9    | LOS E               | 1.1      | 8.1      | 0.98            | 0.71                   | 24.3    |
| Appro  | ach           | 1280        | 1.0   | 1280   | 1.0 | 0.354     | 13.5    | LOS B               | 9.7      | 68.4     | 0.35            | 0.58                   | 48.3    |
| North\ | West: New I   | Road (NW)   |       |        |     |           |         |                     |          |          |                 |                        |         |
| 22     | L2            | 1           | 1.0   | 1      | 1.0 | 0.002     | 21.5    | LOS C               | 0.0      | 0.2      | 0.61            | 0.59                   | 38.5    |
| 23     | R2            | 18          | 1.0   | 18     | 1.0 | 0.162     | 56.6    | LOS E               | 0.9      | 6.2      | 0.98            | 0.69                   | 11.2    |
| Appro  | ach           | 19          | 1.0   | 19     | 1.0 | 0.162     | 54.6    | LOS D               | 0.9      | 6.2      | 0.96            | 0.69                   | 12.6    |
| South  | West: Barne   | eson (SW)   |       |        |     |           |         |                     |          |          |                 |                        |         |
| 24     | L2            | 15          | 1.0   | 15     | 1.0 | 0.010     | 5.9     | LOS A               | 0.0      | 0.2      | 0.08            | 0.56                   | 49.2    |
| 25     | T1            | 980         | 1.0   | 980    | 1.0 | 0.791     | 42.5    | LOS D               | 24.8     | 174.9    | 0.98            | 0.90                   | 31.2    |
| Appro  | ach           | 995         | 1.0   | 995    | 1.0 | 0.791     | 42.0    | LOS D               | 24.8     | 174.9    | 0.96            | 0.89                   | 31.3    |
| All Ve | hicles        | 3320        | 1.0   | 3320   | 1.0 | 0.796     | 30.3    | LOS C               | 24.8     | 174.9    | 0.71            | 0.77                   | 39.3    |
|        |               |             |       |        |     |           |         |                     |          |          |                 |                        |         |

| Move      | ment Performance - Pedestria | ins            |                  |                     |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|---------------------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay | Level of<br>Service |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |                     | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |                     | ped        | m        |                 | per ped                |
| P3        | NorthWest Full Crossing      | 53             | 27.4             | LOS C               | 0.1        | 0.1      | 0.74            | 0.74                   |
| P4        | SouthWest Full Crossing      | 53             | 34.5             | LOS D               | 0.1        | 0.1      | 0.83            | 0.83                   |
| All Ped   | All Pedestrians              |                | 31.0             | LOS D               |            |          | 0.79            | 0.79                   |



Site: Ki1 Barneson/ McMinn Option 1 2031 AM

<sup>∲∲</sup> Network: Option 1 AM \_\_\_\_\_Network

© i3 consultants WA | www.i3consultants.com Roundabout

| Move   | ement Perf   | ormance         | e - Vehi      | icles           |                 |           |                  |                     |                      |                      |                 |                        |                  |
|--------|--------------|-----------------|---------------|-----------------|-----------------|-----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov II | D ODMo<br>v  | Demano<br>Total | d Flows<br>HV | Arriva<br>Total | l Flows I<br>HV | Deg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|        |              | veh/h           | %             | veh/h           | %               | v/c       | sec              |                     | veh                  | m                    |                 | per veh                | km/h             |
| South  | East: McMir  | nn (SE)         |               |                 |                 |           |                  |                     |                      |                      |                 |                        |                  |
| 2      | T1           | 225             | 1.0           | 225             | 1.0             | 0.203     | 3.8              | LOS A               | 1.2                  | 8.4                  | 0.40            | 0.43                   | 48.1             |
| 4      | R2           | 234             | 1.0           | 234             | 1.0             | 0.203     | 8.3              | LOS A               | 1.2                  | 8.4                  | 0.40            | 0.60                   | 41.4             |
| Appro  | ach          | 459             | 1.0           | 459             | 1.0             | 0.203     | 6.1              | LOS A               | 1.2                  | 8.4                  | 0.40            | 0.52                   | 45.5             |
| East:  | BRT (SE)     |                 |               |                 |                 |           |                  |                     |                      |                      |                 |                        |                  |
| 5      | R2           | 8               | 100.0         | 8               | 100.<br>0       | 0.020     | 13.8             | LOS B               | 0.1                  | 1.1                  | 0.62            | 0.73                   | 44.0             |
| Appro  | ach          | 8               | 100.0         | 8               | 100.<br>0       | 0.020     | 13.8             | LOS B               | 0.1                  | 1.1                  | 0.62            | 0.73                   | 44.0             |
| North  | East: Barnes | son (NE)        |               |                 |                 |           |                  |                     |                      |                      |                 |                        |                  |
| 6      | L2           | 151             | 1.0           | 151             | 1.0             | 0.161     | 4.7              | LOS A               | 0.7                  | 4.7                  | 0.41            | 0.55                   | 46.5             |
| 8      | R2           | 182             | 1.0           | 182             | 1.0             | 0.175     | 8.8              | LOS A               | 0.7                  | 5.2                  | 0.40            | 0.67                   | 45.3             |
| Appro  | ach          | 333             | 1.0           | 333             | 1.0             | 0.175     | 7.0              | LOS A               | 0.7                  | 5.2                  | 0.40            | 0.61                   | 45.8             |
| North: | BRT (NW)     |                 |               |                 |                 |           |                  |                     |                      |                      |                 |                        |                  |
| 9      | L2           | 16              | 100.0         | 16              | 100.<br>0       | 0.047     | 11.1             | LOS B               | 0.2                  | 2.4                  | 0.67            | 0.77                   | 44.0             |
| Appro  | ach          | 16              | 100.0         | 16              | 100.<br>0       | 0.047     | 11.1             | LOS B               | 0.2                  | 2.4                  | 0.67            | 0.77                   | 44.0             |
| North\ | West: McMir  | nn (NW)         |               |                 |                 |           |                  |                     |                      |                      |                 |                        |                  |
| 10     | L2           | 266             | 1.0           | 266             | 1.0             | 0.279     | 4.2              | LOS A               | 1.5                  | 10.9                 | 0.45            | 0.52                   | 44.4             |
| 11     | T1           | 338             | 1.0           | 338             | 1.0             | 0.279     | 4.1              | LOS A               | 1.5                  | 10.9                 | 0.46            | 0.48                   | 48.0             |
| Appro  | ach          | 604             | 1.0           | 604             | 1.0             | 0.279     | 4.2              | LOS A               | 1.5                  | 10.9                 | 0.46            | 0.49                   | 46.9             |
| All Ve | hicles       | 1420            | 2.7           | 1420            | 2.7             | 0.279     | 5.6              | LOS A               | 1.5                  | 10.9                 | 0.43            | 0.53                   | 46.1             |



Site: Ki2 Barneson/ TBD Options 2031 AM

### <sup>수수</sup> Network: Option 1 AM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 130 seconds (User-Given Cycle Time)

| wove    | ment Per      | formance    | - ven | cies  |     |           |         |          |          |          |        |           |         |
|---------|---------------|-------------|-------|-------|-----|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov IE  | ODMo          | Demand      |       |       |     | Deg. Satn | Average | Level of |          | of Queue | Prop.  | Effective | Average |
|         | V             | Total       | HV    | Total | HV  |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |               | veh/h       | %     | veh/h | %   | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: Tiger   | Brennan (S  | E)    |       |     |           |         |          |          |          |        |           |         |
| 16      | L2            | 26          | 1.0   | 26    | 1.0 | 0.021     | 7.4     | LOS A    | 0.3      | 1.8      | 0.21   | 0.59      | 52.1    |
| 17      | T1            | 6           | 1.0   | 6     | 1.0 | 0.367     | 28.5    | LOS C    | 12.1     | 85.2     | 0.74   | 0.78      | 38.6    |
| 18      | R2            | 546         | 1.0   | 546   | 1.0 | 0.367     | 34.1    | LOS C    | 12.1     | 85.2     | 0.74   | 0.78      | 41.1    |
| Approa  | ach           | 579         | 1.0   | 579   | 1.0 | 0.367     | 32.9    | LOS C    | 12.1     | 85.2     | 0.72   | 0.77      | 41.3    |
| NorthE  | East: Tiger I | Brennan (NI | E)    |       |     |           |         |          |          |          |        |           |         |
| 19      | L2            | 1361        | 1.0   | 1361  | 1.0 | 0.369     | 5.7     | LOS A    | 0.0      | 0.0      | 0.00   | 0.53      | 55.8    |
| 20      | T1            | 282         | 1.0   | 282   | 1.0 | 0.357     | 28.3    | LOS C    | 12.2     | 86.4     | 0.74   | 0.63      | 29.9    |
| 21      | R2            | 1           | 1.0   | 1     | 1.0 | 0.012     | 71.1    | LOS E    | 0.1      | 0.5      | 0.97   | 0.59      | 21.2    |
| Approa  | ach           | 1644        | 1.0   | 1644  | 1.0 | 0.369     | 9.6     | LOS A    | 12.2     | 86.4     | 0.13   | 0.55      | 52.5    |
| NorthV  | Vest: New I   | Road (NW)   |       |       |     |           |         |          |          |          |        |           |         |
| 22      | L2            | 1           | 1.0   | 1     | 1.0 | 0.001     | 9.6     | LOS A    | 0.0      | 0.1      | 0.29   | 0.57      | 47.5    |
| 23      | R2            | 21          | 1.0   | 21    | 1.0 | 0.247     | 74.1    | LOS E    | 1.4      | 9.7      | 1.00   | 0.70      | 8.9     |
| Approa  | ach           | 22          | 1.0   | 22    | 1.0 | 0.247     | 71.0    | LOS E    | 1.4      | 9.7      | 0.96   | 0.70      | 10.0    |
| South\  | West: Barne   | eson (SW)   |       |       |     |           |         |          |          |          |        |           |         |
| 24      | L2            | 14          | 1.0   | 14    | 1.0 | 0.009     | 5.9     | LOS A    | 0.0      | 0.3      | 0.10   | 0.57      | 49.1    |
| 25      | T1            | 454         | 1.0   | 454   | 1.0 | 0.371     | 36.9    | LOS D    | 11.1     | 78.2     | 0.82   | 0.69      | 33.4    |
| Approa  | ach           | 467         | 1.0   | 467   | 1.0 | 0.371     | 36.0    | LOS D    | 11.1     | 78.2     | 0.80   | 0.69      | 33.6    |
| All Vel | nicles        | 2713        | 1.0   | 2713  | 1.0 | 0.371     | 19.6    | LOS B    | 12.2     | 86.4     | 0.38   | 0.62      | 46.0    |
|         |               |             |       |       |     |           |         |          |          |          |        |           |         |

| Move      | ment Performance - Pedestria | ins            |                  |                     |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|---------------------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay | Level of<br>Service |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |                     | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |                     | ped        | m        |                 | per ped                |
| P3        | NorthWest Full Crossing      | 53             | 34.8             | LOS D               | 0.1        | 0.1      | 0.73            | 0.73                   |
| P4        | SouthWest Full Crossing      | 53             | 32.6             | LOS D               | 0.1        | 0.1      | 0.71            | 0.71                   |
| All Ped   | All Pedestrians              |                | 33.7             | LOS D               |            |          | 0.72            | 0.72                   |



# Site: Ki1 Barneson/ McMinn Option 1 2031 PM

### <sup>¢¢</sup> Network: Option 1 PM Network

© i3 consultants WA | www.i3consultants.com Roundabout

| Move    | ment Perf   | ormance  | e - Vehi | cles   |           |           |         |          |          |          |        |           |         |
|---------|-------------|----------|----------|--------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo        | Demano   | d Flows  | Arriva | I Flows   | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |             | Total    | ΗV       | Total  | ΗV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |             | veh/h    | %        | veh/h  | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| SouthE  | ast: McMir  | nn (SE)  |          |        |           |           |         |          |          |          |        |           |         |
| 2       | T1          | 584      | 1.0      | 584    | 1.0       | 0.409     | 4.7     | LOS A    | 2.8      | 19.9     | 0.56   | 0.56      | 47.3    |
| 4       | R2          | 288      | 1.0      | 288    | 1.0       | 0.409     | 9.4     | LOS A    | 2.8      | 19.5     | 0.56   | 0.65      | 41.8    |
| Approa  | ich         | 873      | 1.0      | 873    | 1.0       | 0.409     | 6.3     | LOS A    | 2.8      | 19.9     | 0.56   | 0.59      | 46.1    |
| East: E | BRT (SE)    |          |          |        |           |           |         |          |          |          |        |           |         |
| 5       | R2          | 18       | 100.0    | 18     | 100.<br>0 | 0.035     | 11.7    | LOS B    | 0.1      | 1.9      | 0.54   | 0.68      | 45.0    |
| Approa  | ich         | 18       | 100.0    | 18     | 100.<br>0 | 0.035     | 11.7    | LOS B    | 0.1      | 1.9      | 0.54   | 0.68      | 45.0    |
| NorthE  | ast: Barnes | son (NE) |          |        |           |           |         |          |          |          |        |           |         |
| 6       | L2          | 66       | 1.0      | 66     | 1.0       | 0.084     | 3.9     | LOS A    | 0.3      | 2.4      | 0.26   | 0.44      | 46.9    |
| 8       | R2          | 274      | 1.0      | 274    | 1.0       | 0.212     | 7.8     | LOS A    | 1.0      | 7.0      | 0.23   | 0.59      | 45.7    |
| Approa  | ich         | 340      | 1.0      | 340    | 1.0       | 0.212     | 7.0     | LOS A    | 1.0      | 7.0      | 0.24   | 0.56      | 46.0    |
| North:  | BRT (NW)    |          |          |        |           |           |         |          |          |          |        |           |         |
| 9       | L2          | 14       | 100.0    | 14     | 100.<br>0 | 0.038     | 10.1    | LOS B    | 0.1      | 1.9      | 0.64   | 0.74      | 44.5    |
| Approa  | ich         | 14       | 100.0    | 14     | 100.<br>0 | 0.038     | 10.1    | LOS B    | 0.1      | 1.9      | 0.64   | 0.74      | 44.5    |
| NorthW  | /est: McMir | nn (NW)  |          |        |           |           |         |          |          |          |        |           |         |
| 10      | L2          | 375      | 1.0      | 375    | 1.0       | 0.355     | 4.6     | LOS A    | 2.1      | 14.9     | 0.55   | 0.60      | 44.1    |
| 11      | T1          | 78       | 1.0      | 78     | 1.0       | 0.124     | 5.5     | LOS A    | 0.6      | 4.0      | 0.52   | 0.56      | 47.7    |
| Approa  | ich         | 453      | 1.0      | 453    | 1.0       | 0.355     | 4.8     | LOS A    | 2.1      | 14.9     | 0.54   | 0.59      | 45.1    |
| All Veh | icles       | 1697     | 2.8      | 1697   | 2.8       | 0.409     | 6.1     | LOS A    | 2.8      | 19.9     | 0.49   | 0.58      | 45.8    |



Site: Ki2 Barneson/ TBD Options 2031 PM

### <sup>수수</sup> Network: Option 1 PM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 130 seconds (User-Given Cycle Time)

| Nove   | ement Per     | forman <u>ce</u> | - veni | icies |     |           |         |          |          |          |        |           |         |
|--------|---------------|------------------|--------|-------|-----|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II | D ODMo        | Demand           |        |       |     | Deg. Satn | Average | Level of |          | of Queue | Prop.  | Effective | Average |
|        |               | Total            | HV     | Total | HV  |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|        |               | veh/h            | %      | veh/h | %   | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South  | East: Tiger   | Brennan (S       | E)     |       |     |           |         |          |          |          |        |           |         |
| 16     | L2            | 87               | 1.0    | 87    | 1.0 | 0.064     | 6.9     | LOS A    | 0.7      | 5.1      | 0.19   | 0.60      | 52.6    |
| 17     | T1            | 2                | 1.0    | 2     | 1.0 | 0.594     | 28.9    | LOS C    | 23.1     | 162.9    | 0.81   | 0.83      | 38.4    |
| 18     | R2            | 975              | 1.0    | 975   | 1.0 | 0.594     | 34.5    | LOS C    | 23.1     | 162.9    | 0.81   | 0.83      | 40.9    |
| Appro  | ach           | 1064             | 1.0    | 1064  | 1.0 | 0.594     | 32.2    | LOS C    | 23.1     | 162.9    | 0.76   | 0.81      | 41.4    |
| North  | East: Tiger I | Brennan (N       | E)     |       |     |           |         |          |          |          |        |           |         |
| 19     | L2            | 709              | 1.0    | 709   | 1.0 | 0.279     | 12.1    | LOS B    | 9.1      | 63.9     | 0.18   | 0.58      | 51.9    |
| 20     | T1            | 237              | 1.0    | 237   | 1.0 | 0.279     | 29.5    | LOS C    | 9.1      | 63.9     | 0.73   | 0.64      | 29.0    |
| 21     | R2            | 23               | 1.0    | 23    | 1.0 | 0.272     | 74.3    | LOS E    | 1.5      | 10.7     | 1.00   | 0.71      | 20.7    |
| Appro  | ach           | 969              | 1.0    | 969   | 1.0 | 0.279     | 17.8    | LOS B    | 9.1      | 63.9     | 0.34   | 0.60      | 46.9    |
| North\ | West: New I   | Road (NW)        |        |       |     |           |         |          |          |          |        |           |         |
| 22     | L2            | 1                | 1.0    | 1     | 1.0 | 0.002     | 16.0    | LOS B    | 0.0      | 0.2      | 0.44   | 0.59      | 42.3    |
| 23     | R2            | 18               | 1.0    | 18    | 1.0 | 0.210     | 73.9    | LOS E    | 1.2      | 8.2      | 0.99   | 0.70      | 9.0     |
| Appro  | ach           | 19               | 1.0    | 19    | 1.0 | 0.210     | 70.6    | LOS E    | 1.2      | 8.2      | 0.96   | 0.69      | 10.2    |
| South  | West: Barne   | eson (SW)        |        |       |     |           |         |          |          |          |        |           |         |
| 24     | L2            | 15               | 1.0    | 15    | 1.0 | 0.010     | 6.0     | LOS A    | 0.0      | 0.3      | 0.10   | 0.57      | 49.0    |
| 25     | T1            | 634              | 1.0    | 634   | 1.0 | 0.591     | 43.7    | LOS D    | 17.4     | 122.6    | 0.92   | 0.79      | 30.8    |
| Appro  | ach           | 648              | 1.0    | 648   | 1.0 | 0.591     | 42.9    | LOS D    | 17.4     | 122.6    | 0.90   | 0.78      | 31.0    |
| All Ve | hicles        | 2701             | 1.0    | 2701  | 1.0 | 0.594     | 29.9    | LOS C    | 23.1     | 162.9    | 0.64   | 0.73      | 40.6    |
|        |               |                  |        |       |     |           |         |          |          |          |        |           |         |

| Move    | ment Performance - Pedestria | ins    |       |          |            |          |                  |         |
|---------|------------------------------|--------|-------|----------|------------|----------|------------------|---------|
| Mov     | Description                  | Demand |       | Level of |            |          | Prop. Effecti    |         |
| ID      | Description                  | Flow   | Delay | Service  | Que        | eue      | Queued Stop Rate |         |
|         |                              |        |       |          | Pedestrian | Distance |                  |         |
|         |                              | ped/h  | sec   |          | ped        | m        |                  | per ped |
| P3      | NorthWest Full Crossing      | 53     | 38.5  | LOS D    | 0.1        | 0.1      | 0.77             | 0.77    |
| P4      | SouthWest Full Crossing      | 53     | 29.2  | LOS C    | 0.1        | 0.1      | 0.67             | 0.67    |
| All Ped | lestrians                    | 105    | 33.9  | LOS D    |            |          | 0.72             | 0.72    |



## Site: Ki1 Barneson/ McMinn Option 2 2031 AM

### <sup>수수</sup> Network: Option 2 AM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| Move    | ment Perf    | ormance  | e - Vehi | icles  |           |           |         |          |          |          |        |           |         |
|---------|--------------|----------|----------|--------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo         | Deman    | d Flows  | Arriva | l Flows   | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |              | Total    | ΗV       | Total  | ΗV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |              | veh/h    | %        | veh/h  | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: McMin  | ın (SE)  |          |        |           |           |         |          |          |          |        |           |         |
| 2       | T1           | 225      | 1.0      | 225    | 1.0       | 0.581     | 39.8    | LOS D    | 10.2     | 71.7     | 0.96   | 0.79      | 33.5    |
| 4       | R2           | 234      | 1.0      | 234    | 1.0       | 0.905     | 67.5    | LOS E    | 6.8      | 47.7     | 1.00   | 1.05      | 18.9    |
| Approa  | ach          | 459      | 1.0      | 459    | 1.0       | 0.905     | 53.9    | LOS D    | 10.2     | 71.7     | 0.98   | 0.92      | 26.4    |
| East: E | BRT (SE)     |          |          |        |           |           |         |          |          |          |        |           |         |
| 5       | R2           | 8        | 100.0    | 8      | 100.<br>0 | 0.111     | 55.9    | LOS E    | 0.4      | 5.4      | 0.96   | 0.68      | 29.0    |
| Approa  | ach          | 8        | 100.0    | 8      | 100.<br>0 | 0.111     | 55.9    | LOS E    | 0.4      | 5.4      | 0.96   | 0.68      | 29.0    |
| NorthE  | East: Barnes | son (NE) |          |        |           |           |         |          |          |          |        |           |         |
| 6       | L2           | 151      | 1.0      | 151    | 1.0       | 0.146     | 19.3    | LOS B    | 1.7      | 12.3     | 0.42   | 0.64      | 37.8    |
| 8       | R2           | 182      | 1.0      | 182    | 1.0       | 0.353     | 17.2    | LOS B    | 3.5      | 24.6     | 0.41   | 0.65      | 38.7    |
| Approa  | ach          | 333      | 1.0      | 333    | 1.0       | 0.353     | 18.2    | LOS B    | 3.5      | 24.6     | 0.42   | 0.64      | 38.3    |
| North:  | BRT (NW)     |          |          |        |           |           |         |          |          |          |        |           |         |
| 9       | L2           | 16       | 100.0    | 16     | 100.<br>0 | 0.208     | 56.7    | LOS E    | 0.8      | 10.4     | 0.97   | 0.70      | 29.0    |
| Approa  | ach          | 16       | 100.0    | 16     | 100.<br>0 | 0.208     | 56.7    | LOS E    | 0.8      | 10.4     | 0.97   | 0.70      | 29.0    |
| NorthV  | Vest: McMir  | nn (NW)  |          |        |           |           |         |          |          |          |        |           |         |
| 10      | L2           | 266      | 1.0      | 266    | 1.0       | 0.394     | 17.1    | LOS B    | 6.0      | 42.2     | 0.76   | 0.75      | 35.3    |
| 11      | T1           | 338      | 1.0      | 338    | 1.0       | 0.394     | 12.8    | LOS B    | 7.3      | 51.5     | 0.75   | 0.64      | 43.0    |
| Approa  | ach          | 604      | 1.0      | 604    | 1.0       | 0.394     | 14.7    | LOS B    | 7.3      | 51.5     | 0.75   | 0.69      | 40.5    |
| All Veh | nicles       | 1420     | 2.7      | 1420   | 2.7       | 0.905     | 28.9    | LOS C    | 10.2     | 71.7     | 0.75   | 0.76      | 34.0    |

| Move    | ment Performance - Pedestria | ins    |         |          |            |          |        |           |
|---------|------------------------------|--------|---------|----------|------------|----------|--------|-----------|
| Mov     |                              | Demand | Average | Level of |            |          | Prop.  | Effective |
| ID      | Description                  | Flow   | Delay   | Service  | Que        | eue      | Queued | Stop Rate |
|         |                              |        |         |          | Pedestrian | Distance |        |           |
|         |                              | ped/h  | sec     |          | ped        | m        |        | per ped   |
| P1      | SouthEast Full Crossing      | 53     | 44.3    | LOS E    | 0.1        | 0.1      | 0.94   | 0.94      |
| P2      | NorthEast Full Crossing      | 53     | 32.9    | LOS D    | 0.1        | 0.1      | 0.81   | 0.81      |
| P3      | NorthWest Full Crossing      | 53     | 44.3    | LOS E    | 0.1        | 0.1      | 0.94   | 0.94      |
| All Ped | All Pedestrians              |        | 40.5    | LOS E    |            |          | 0.90   | 0.90      |



Site: Ki2 Barneson/ TBD Options 2031 AM

### <sup>수수</sup> Network: Option 2 AM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| INIOAE | ement Per   | rormance   | e - veni | icies |     |           |         |          |          |          |        |                        |         |
|--------|-------------|------------|----------|-------|-----|-----------|---------|----------|----------|----------|--------|------------------------|---------|
| Mov II | D ODMo      | Demand     |          |       |     | Deg. Satn | Average | Level of |          | of Queue | Prop.  | Effective<br>Stop Poto | Average |
|        |             | Total      | HV       | Total | HV  |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate              | Speed   |
|        |             | veh/h      | %        | veh/h | %   | v/c       | sec     |          | veh      | m        |        | per veh                | km/h    |
| South  | East: Tiger | Brennan (S | SE)      |       |     |           |         |          |          |          |        |                        |         |
| 16     | L2          | 26         | 1.0      | 26    | 1.0 | 0.021     | 7.4     | LOS A    | 0.2      | 1.6      | 0.24   | 0.60                   | 52.1    |
| 17     | T1          | 6          | 1.0      | 6     | 1.0 | 0.416     | 25.9    | LOS C    | 10.2     | 71.7     | 0.80   | 0.79                   | 39.7    |
| 18     | R2          | 546        | 1.0      | 546   | 1.0 | 0.416     | 31.5    | LOS C    | 10.2     | 71.7     | 0.80   | 0.79                   | 42.0    |
| Appro  | ach         | 579        | 1.0      | 579   | 1.0 | 0.416     | 30.4    | LOS C    | 10.2     | 71.7     | 0.78   | 0.78                   | 42.3    |
| North  | East: Tiger | Brennan (N | IE)      |       |     |           |         |          |          |          |        |                        |         |
| 19     | L2          | 1361       | 1.0      | 1361  | 1.0 | 0.369     | 5.7     | LOS A    | 0.0      | 0.0      | 0.00   | 0.53                   | 55.8    |
| 20     | T1          | 282        | 1.0      | 282   | 1.0 | 0.364     | 22.6    | LOS C    | 9.6      | 67.9     | 0.75   | 0.64                   | 33.3    |
| 21     | R2          | 1          | 1.0      | 1     | 1.0 | 0.010     | 54.5    | LOS D    | 0.0      | 0.4      | 0.96   | 0.59                   | 24.9    |
| Appro  | ach         | 1644       | 1.0      | 1644  | 1.0 | 0.369     | 8.6     | LOS A    | 9.6      | 67.9     | 0.13   | 0.55                   | 53.2    |
| North\ | West: New   | Road (NW)  |          |       |     |           |         |          |          |          |        |                        |         |
| 22     | L2          | 1          | 1.0      | 1     | 1.0 | 0.001     | 9.4     | LOS A    | 0.0      | 0.1      | 0.33   | 0.57                   | 47.8    |
| 23     | R2          | 21         | 1.0      | 21    | 1.0 | 0.190     | 56.8    | LOS E    | 1.0      | 7.3      | 0.98   | 0.70                   | 11.2    |
| Appro  | ach         | 22         | 1.0      | 22    | 1.0 | 0.190     | 54.5    | LOS D    | 1.0      | 7.3      | 0.95   | 0.70                   | 12.5    |
| South  | West: Barn  | eson (SW)  |          |       |     |           |         |          |          |          |        |                        |         |
| 24     | L2          | 14         | 1.0      | 14    | 1.0 | 0.009     | 6.2     | LOS A    | 0.1      | 0.5      | 0.21   | 0.58                   | 48.4    |
| 25     | T1          | 454        | 1.0      | 454   | 1.0 | 0.418     | 31.8    | LOS C    | 9.1      | 64.1     | 0.84   | 0.71                   | 35.5    |
| Appro  | ach         | 467        | 1.0      | 467   | 1.0 | 0.418     | 31.0    | LOS C    | 9.1      | 64.1     | 0.83   | 0.70                   | 35.7    |
| All Ve | hicles      | 2713       | 1.0      | 2713  | 1.0 | 0.418     | 17.5    | LOS B    | 10.2     | 71.7     | 0.39   | 0.63                   | 47.2    |
|        |             |            |          |       |     |           |         |          |          |          |        |                        |         |

| Move    | ment Performance - Pedestria | ins    |         |          |            |          |        |           |
|---------|------------------------------|--------|---------|----------|------------|----------|--------|-----------|
| Mov     | Description                  | Demand | Average | Level of |            |          | Prop.  | Effective |
| ID      |                              | Flow   | Delay   | Service  | Que        | eue      | Queued | Stop Rate |
|         |                              |        |         |          | Pedestrian | Distance |        |           |
|         |                              | ped/h  | sec     |          | ped        | m        |        | per ped   |
| P3      | NorthWest Full Crossing      | 53     | 30.5    | LOS D    | 0.1        | 0.1      | 0.78   | 0.78      |
| P4      | SouthWest Full Crossing      | 53     | 31.3    | LOS D    | 0.1        | 0.1      | 0.79   | 0.79      |
| All Pec | lestrians                    | 105    | 30.9    | LOS D    |            |          | 0.79   | 0.79      |



## Site: Ki1 Barneson/ McMinn Option 2 2031 PM

### <sup>수수</sup> Network: Option 2 PM Network

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| Move    | ment Per     | formance | e - Veh | icles |           |           |         |          |          |          |        |           |         |
|---------|--------------|----------|---------|-------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
|         | O ODMo       | Deman    |         |       | I Flows   | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |              | Total    | HV      | Total | HV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |              | veh/h    | %       | veh/h | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: McMir  | nn (SE)  |         |       |           |           |         |          |          |          |        |           |         |
| 2       | T1           | 584      | 1.0     | 584   | 1.0       | 0.893     | 53.4    | LOS D    | 23.4     | 165.1    | 1.00   | 1.09      | 30.0    |
| 4       | R2           | 288      | 1.0     | 288   | 1.0       | 0.893     | 62.9    | LOS E    | 14.8     | 104.7    | 1.00   | 1.05      | 19.9    |
| Approa  | ach          | 873      | 1.0     | 873   | 1.0       | 0.893     | 56.5    | LOS E    | 23.4     | 165.1    | 1.00   | 1.08      | 27.2    |
| East: I | BRT (SE)     |          |         |       |           |           |         |          |          |          |        |           |         |
| 5       | R2           | 18       | 100.0   | 18    | 100.<br>0 | 0.275     | 58.8    | LOS E    | 0.9      | 12.1     | 0.99   | 0.71      | 28.4    |
| Approa  | ach          | 18       | 100.0   | 18    | 100.<br>0 | 0.275     | 58.8    | LOS E    | 0.9      | 12.1     | 0.99   | 0.71      | 28.4    |
| NorthE  | East: Barnes | son (NE) |         |       |           |           |         |          |          |          |        |           |         |
| 6       | L2           | 66       | 1.0     | 66    | 1.0       | 0.043     | 18.4    | LOS B    | 0.8      | 5.8      | 0.44   | 0.63      | 38.2    |
| 8       | R2           | 274      | 1.0     | 274   | 1.0       | 0.353     | 15.8    | LOS B    | 5.4      | 38.3     | 0.43   | 0.67      | 39.4    |
| Approa  | ach          | 340      | 1.0     | 340   | 1.0       | 0.353     | 16.3    | LOS B    | 5.4      | 38.3     | 0.43   | 0.66      | 39.2    |
| North:  | BRT (NW)     |          |         |       |           |           |         |          |          |          |        |           |         |
| 9       | L2           | 14       | 100.0   | 14    | 100.<br>0 | 0.210     | 58.3    | LOS E    | 0.7      | 9.2      | 0.98   | 0.70      | 28.7    |
| Approa  | ach          | 14       | 100.0   | 14    | 100.<br>0 | 0.210     | 58.3    | LOS E    | 0.7      | 9.2      | 0.98   | 0.70      | 28.7    |
| North\  | Vest: McMir  | nn (NW)  |         |       |           |           |         |          |          |          |        |           |         |
| 10      | L2           | 375      | 1.0     | 375   | 1.0       | 0.549     | 18.7    | LOS B    | 8.5      | 59.8     | 0.84   | 0.80      | 34.1    |
| 11      | T1           | 78       | 1.0     | 78    | 1.0       | 0.183     | 20.2    | LOS C    | 2.2      | 15.4     | 0.85   | 0.65      | 40.0    |
| Approa  | ach          | 453      | 1.0     | 453   | 1.0       | 0.549     | 18.9    | LOS B    | 8.5      | 59.8     | 0.84   | 0.78      | 35.6    |
| All Vel | nicles       | 1697     | 2.8     | 1697  | 2.8       | 0.893     | 38.5    | LOS D    | 23.4     | 165.1    | 0.84   | 0.91      | 30.6    |

| Move      | ment Performance - Pedestria | ins            |                  |                     |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|---------------------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay | Level of<br>Service |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |                     | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |                     | ped        | m        |                 | per ped                |
| P1        | SouthEast Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| P2        | NorthEast Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| P3        | NorthWest Full Crossing      | 53             | 44.3             | LOS E               | 0.1        | 0.1      | 0.94            | 0.94                   |
| All Ped   | lestrians                    | 158            | 44.3             | LOS E               |            |          | 0.94            | 0.94                   |



## Site: Ki2 Barneson/ TBD Options 2031 PM

### <sup>中中</sup> Network: Option 2 PM Network

© i3 consultants WA | www.i3consultants.com

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network Cycle Time)

| Move    | ement Per     | formance    | - Vehi | cles    |         |           |         |          |          |          |        |           |         |
|---------|---------------|-------------|--------|---------|---------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II  | O ODMo        | Demand      | Flows  | Arrival | Flows [ | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |               | Total       | ΗV     | Total   | ΗV      |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |               | veh/h       | %      | veh/h   | %       | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: Tiger   | Brennan (Sl | E)     |         |         |           |         |          |          |          |        |           |         |
| 16      | L2            | 87          | 1.0    | 87      | 1.0     | 0.067     | 6.9     | LOS A    | 0.6      | 4.5      | 0.22   | 0.61      | 52.5    |
| 17      | T1            | 2           | 1.0    | 2       | 1.0     | 0.662     | 26.4    | LOS C    | 19.5     | 137.5    | 0.88   | 0.84      | 39.4    |
| 18      | R2            | 975         | 1.0    | 975     | 1.0     | 0.662     | 32.0    | LOS C    | 19.5     | 137.5    | 0.88   | 0.84      | 41.9    |
| Appro   | ach           | 1064        | 1.0    | 1064    | 1.0     | 0.662     | 29.9    | LOS C    | 19.5     | 137.5    | 0.82   | 0.82      | 42.3    |
| North   | East: Tiger E | Brennan (NE | Ξ)     |         |         |           |         |          |          |          |        |           |         |
| 19      | L2            | 709         | 1.0    | 709     | 1.0     | 0.280     | 10.5    | LOS B    | 7.0      | 49.6     | 0.18   | 0.58      | 52.9    |
| 20      | T1            | 237         | 1.0    | 237     | 1.0     | 0.280     | 23.3    | LOS C    | 7.0      | 49.6     | 0.74   | 0.64      | 32.4    |
| 21      | R2            | 23          | 1.0    | 23      | 1.0     | 0.209     | 56.9    | LOS E    | 1.1      | 8.1      | 0.98   | 0.71      | 24.3    |
| Appro   | ach           | 969         | 1.0    | 969     | 1.0     | 0.280     | 14.7    | LOS B    | 7.0      | 49.6     | 0.33   | 0.60      | 48.7    |
| North\  | Nest: New I   | Road (NW)   |        |         |         |           |         |          |          |          |        |           |         |
| 22      | L2            | 1           | 1.0    | 1       | 1.0     | 0.002     | 15.3    | LOS B    | 0.0      | 0.2      | 0.49   | 0.59      | 42.8    |
| 23      | R2            | 18          | 1.0    | 18      | 1.0     | 0.162     | 56.6    | LOS E    | 0.9      | 6.2      | 0.98   | 0.69      | 11.2    |
| Appro   | ach           | 19          | 1.0    | 19      | 1.0     | 0.162     | 54.3    | LOS D    | 0.9      | 6.2      | 0.95   | 0.69      | 12.6    |
| South   | West: Barne   | eson (SW)   |        |         |         |           |         |          |          |          |        |           |         |
| 24      | L2            | 15          | 1.0    | 15      | 1.0     | 0.010     | 5.7     | LOS A    | 0.0      | 0.1      | 0.02   | 0.55      | 49.5    |
| 25      | T1            | 634         | 1.0    | 634     | 1.0     | 0.681     | 32.8    | LOS C    | 14.7     | 104.1    | 0.92   | 0.79      | 35.1    |
| Appro   | ach           | 648         | 1.0    | 648     | 1.0     | 0.681     | 32.2    | LOS C    | 14.7     | 104.1    | 0.90   | 0.78      | 35.2    |
| All Vel | hicles        | 2701        | 1.0    | 2701    | 1.0     | 0.681     | 25.2    | LOS C    | 19.5     | 137.5    | 0.67   | 0.73      | 42.7    |

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ment Performance - Pedestria | ins            |                  |                     |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|---------------------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay | Level of<br>Service |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |                     | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |                     | ped        | m        |                 | per ped                |
| P3        | NorthWest Full Crossing      | 53             | 33.7             | LOS D               | 0.1        | 0.1      | 0.82            | 0.82                   |
| P4        | SouthWest Full Crossing      | 53             | 28.2             | LOS C               | 0.1        | 0.1      | 0.75            | 0.75                   |
| All Ped   | lestrians                    | 105            | 30.9             | LOS D               |            |          | 0.79            | 0.79                   |



# Site: Ki3 Bennett/ McMinn/ TBD Jascobs 2031 AM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 50 seconds (Practical Cycle Time)

| Move    | ment Per   | formance  | - Vehi  | cles      |         |          |          |          |        |           |         |
|---------|------------|-----------|---------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov IE  | ODMo       | Demand    | Flows I | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total     | ΗV      |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h     | %       | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: McMi | nn (SE)   |         |           |         |          |          |          |        |           |         |
| 26      | L2         | 36        | 1.0     | 0.042     | 10.1    | LOS B    | 0.3      | 2.4      | 0.53   | 0.65      | 43.8    |
| 27      | T1         | 28        | 1.0     | 0.126     | 20.1    | LOS C    | 0.8      | 5.9      | 0.88   | 0.64      | 42.2    |
| 28      | R2         | 28        | 1.0     | 0.126     | 26.0    | LOS C    | 0.8      | 5.9      | 0.89   | 0.70      | 43.0    |
| Approa  | ach        | 93        | 1.0     | 0.126     | 18.0    | LOS B    | 0.8      | 5.9      | 0.75   | 0.66      | 42.9    |
| NorthE  | ast: TBD ( | NE)       |         |           |         |          |          |          |        |           |         |
| 29      | L2         | 86        | 1.0     | 0.789     | 24.8    | LOS C    | 13.8     | 97.3     | 0.96   | 0.94      | 45.0    |
| 30      | T1         | 1011      | 1.0     | 0.789     | 19.2    | LOS B    | 13.9     | 98.0     | 0.96   | 0.94      | 45.5    |
| 31      | R2         | 120       | 1.0     | 0.307     | 20.9    | LOS C    | 2.4      | 16.8     | 0.81   | 0.76      | 47.3    |
| Approa  | ach        | 1217      | 1.0     | 0.789     | 19.8    | LOS B    | 13.9     | 98.0     | 0.94   | 0.92      | 45.6    |
| NorthV  | Vest: McMi | nn (NW)   |         |           |         |          |          |          |        |           |         |
| 32      | L2         | 60        | 1.0     | 0.054     | 7.0     | LOS A    | 0.3      | 1.9      | 0.33   | 0.62      | 54.7    |
| 33      | T1         | 53        | 1.0     | 0.113     | 22.5    | LOS C    | 0.6      | 4.3      | 0.92   | 0.66      | 41.7    |
| 34      | R2         | 48        | 1.0     | 0.219     | 28.6    | LOS C    | 1.1      | 8.1      | 0.94   | 0.73      | 36.5    |
| Approa  | ach        | 161       | 1.0     | 0.219     | 18.5    | LOS B    | 1.1      | 8.1      | 0.70   | 0.66      | 45.6    |
| South\  | Vest: Benr | nett (SW) |         |           |         |          |          |          |        |           |         |
| 35      | L2         | 208       | 1.0     | 0.176     | 7.1     | LOS A    | 1.1      | 7.5      | 0.36   | 0.65      | 51.0    |
| 36      | T1         | 346       | 1.0     | 0.248     | 12.4    | LOS B    | 3.0      | 21.4     | 0.74   | 0.60      | 49.9    |
| 37      | R2         | 56        | 1.0     | 0.320     | 29.4    | LOS C    | 1.4      | 9.7      | 0.95   | 0.74      | 29.5    |
| Approa  | ach        | 611       | 1.0     | 0.320     | 12.1    | LOS B    | 3.0      | 21.4     | 0.63   | 0.63      | 48.5    |
| All Veł | nicles     | 2081      | 1.0     | 0.789     | 17.4    | LOS B    | 13.9     | 98.0     | 0.82   | 0.81      | 46.3    |

| Move    | ment Performance - Pedestria | ans    |         |          |            |          |        |           |
|---------|------------------------------|--------|---------|----------|------------|----------|--------|-----------|
| Mov     |                              | Demand | Average | Level of | Average    | Back of  | Prop.  | Effective |
| ID      | Description                  | Flow   | Delay   | Service  | Que        | eue      | Queued | Stop Rate |
|         |                              |        |         |          | Pedestrian | Distance |        |           |
|         |                              | ped/h  | sec     |          | ped        | m        |        | per ped   |
| P5      | SouthEast Full Crossing      | 53     | 19.4    | LOS B    | 0.1        | 0.1      | 0.88   | 0.88      |
| P8      | SouthWest Full Crossing      | 53     | 19.4    | LOS B    | 0.1        | 0.1      | 0.88   | 0.88      |
| All Pec | II Pedestrians               |        | 19.4    | LOS B    |            |          | 0.88   | 0.88      |



# Site: Ki3 Bennett/ McMinn/ TBD Jascobs 2031 PM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 50 seconds (Practical Cycle Time)

| Move    | ment Per    | formance | - Vehic | les      |         |          |          |          |        |           |         |
|---------|-------------|----------|---------|----------|---------|----------|----------|----------|--------|-----------|---------|
|         | ODMo        |          |         | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |             | Total    | ΗV      |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |             | veh/h    | %       | v/c      | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: McMi  | nn (SE)  |         |          |         |          |          |          |        |           |         |
| 26      | L2          | 66       | 1.0     | 0.063    | 7.7     | LOS A    | 0.4      | 2.9      | 0.39   | 0.64      | 46.5    |
| 27      | T1          | 74       | 1.0     | 0.327    | 20.8    | LOS C    | 2.2      | 15.9     | 0.91   | 0.69      | 41.9    |
| 28      | R2          | 74       | 1.0     | 0.327    | 26.9    | LOS C    | 2.2      | 15.9     | 0.93   | 0.75      | 42.6    |
| Appro   | ach         | 214      | 1.0     | 0.327    | 18.8    | LOS B    | 2.2      | 15.9     | 0.75   | 0.70      | 43.0    |
| NorthE  | East: TBD ( | NE)      |         |          |         |          |          |          |        |           |         |
| 29      | L2          | 46       | 1.0     | 0.456    | 19.1    | LOS B    | 6.1      | 42.8     | 0.81   | 0.70      | 48.2    |
| 30      | T1          | 587      | 1.0     | 0.456    | 13.6    | LOS B    | 6.1      | 43.1     | 0.81   | 0.69      | 48.9    |
| 31      | R2          | 33       | 1.0     | 0.149    | 25.6    | LOS C    | 0.7      | 5.1      | 0.87   | 0.72      | 45.3    |
| Appro   | ach         | 666      | 1.0     | 0.456    | 14.5    | LOS B    | 6.1      | 43.1     | 0.82   | 0.70      | 48.6    |
| North\  | Vest: McMi  | nn (NW)  |         |          |         |          |          |          |        |           |         |
| 32      | L2          | 71       | 1.0     | 0.083    | 9.0     | LOS A    | 0.6      | 4.2      | 0.48   | 0.66      | 53.5    |
| 33      | T1          | 49       | 1.0     | 0.106    | 22.4    | LOS C    | 0.6      | 4.0      | 0.92   | 0.65      | 41.7    |
| 34      | R2          | 12       | 1.0     | 0.052    | 27.8    | LOS C    | 0.3      | 1.9      | 0.91   | 0.67      | 36.9    |
| Appro   | ach         | 132      | 1.0     | 0.106    | 15.7    | LOS B    | 0.6      | 4.2      | 0.68   | 0.66      | 48.3    |
| South   | West: Benn  | ett (SW) |         |          |         |          |          |          |        |           |         |
| 35      | L2          | 226      | 1.0     | 0.175    | 6.9     | LOS A    | 0.9      | 6.6      | 0.34   | 0.64      | 51.1    |
| 36      | T1          | 852      | 1.0     | 0.665    | 15.1    | LOS B    | 9.1      | 64.5     | 0.87   | 0.77      | 48.2    |
| 37      | R2          | 84       | 1.0     | 0.300    | 23.6    | LOS C    | 1.8      | 12.8     | 0.86   | 0.76      | 32.6    |
| Appro   | ach         | 1162     | 1.0     | 0.665    | 14.1    | LOS B    | 9.1      | 64.5     | 0.77   | 0.75      | 47.7    |
| All Vel | nicles      | 2174     | 1.0     | 0.665    | 14.8    | LOS B    | 9.1      | 64.5     | 0.78   | 0.72      | 47.6    |

| Move    | ment Performance - Pedestria | ans    |         |          |            |          |        |           |
|---------|------------------------------|--------|---------|----------|------------|----------|--------|-----------|
| Mov     |                              | Demand | Average | Level of | Average    | Back of  | Prop.  | Effective |
| ID      | Description                  | Flow   | Delay   | Service  | Que        | eue      | Queued | Stop Rate |
|         |                              |        |         |          | Pedestrian | Distance |        |           |
|         |                              | ped/h  | sec     |          | ped        | m        |        | per ped   |
| P5      | SouthEast Full Crossing      | 53     | 19.4    | LOS B    | 0.1        | 0.1      | 0.88   | 0.88      |
| P8      | SouthWest Full Crossing      | 53     | 19.4    | LOS B    | 0.1        | 0.1      | 0.88   | 0.88      |
| All Pec | II Pedestrians               |        | 19.4    | LOS B    |            |          | 0.88   | 0.88      |



# Site: Ki3 Bennett/ McMinn/ TBD Options 2031 AM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 60 seconds (Practical Cycle Time)

| Move    | ment Per    | formance | - Vehic | les      |         |          |          |          |        |           |         |
|---------|-------------|----------|---------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II  | ODMo        | Demand   | Flows D | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |             | Total    | ΗV      |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |             | veh/h    | %       | v/c      | sec     |          | veh      | m        |        | per veh   | km/h    |
| South   | East: McMi  | nn (SE)  |         |          |         |          |          |          |        |           |         |
| 26      | L2          | 36       | 1.0     | 0.044    | 10.9    | LOS B    | 0.4      | 3.0      | 0.52   | 0.65      | 43.0    |
| 27      | T1          | 28       | 1.0     | 0.135    | 24.6    | LOS C    | 1.0      | 7.1      | 0.89   | 0.65      | 39.8    |
| 28      | R2          | 28       | 1.0     | 0.135    | 30.5    | LOS C    | 1.0      | 7.1      | 0.90   | 0.70      | 41.0    |
| Appro   | ach         | 93       | 1.0     | 0.135    | 21.1    | LOS C    | 1.0      | 7.1      | 0.75   | 0.67      | 41.1    |
| NorthE  | East: TBD ( | NE)      |         |          |         |          |          |          |        |           |         |
| 29      | L2          | 86       | 1.0     | 0.741    | 21.7    | LOS C    | 16.5     | 116.5    | 0.89   | 0.83      | 46.7    |
| 30      | T1          | 1201     | 1.0     | 0.741    | 16.2    | LOS B    | 16.6     | 117.1    | 0.89   | 0.83      | 47.3    |
| 31      | R2          | 120      | 1.0     | 0.301    | 20.1    | LOS C    | 2.6      | 18.1     | 0.74   | 0.75      | 47.7    |
| Appro   | ach         | 1407     | 1.0     | 0.741    | 16.8    | LOS B    | 16.6     | 117.1    | 0.87   | 0.82      | 47.3    |
| North\  | Vest: McMi  | nn (NW)  |         |          |         |          |          |          |        |           |         |
| 32      | L2          | 60       | 1.0     | 0.058    | 6.9     | LOS A    | 0.3      | 2.2      | 0.29   | 0.61      | 54.7    |
| 33      | T1          | 53       | 1.0     | 0.136    | 28.2    | LOS C    | 0.7      | 5.3      | 0.94   | 0.67      | 38.7    |
| 34      | R2          | 48       | 1.0     | 0.263    | 34.5    | LOS C    | 1.4      | 10.0     | 0.96   | 0.73      | 33.9    |
| Appro   | ach         | 161      | 1.0     | 0.263    | 22.2    | LOS C    | 1.4      | 10.0     | 0.70   | 0.67      | 43.7    |
| South   | West: Benn  | ett (SW) |         |          |         |          |          |          |        |           |         |
| 35      | L2          | 208      | 1.0     | 0.175    | 7.0     | LOS A    | 1.2      | 8.3      | 0.32   | 0.64      | 51.1    |
| 36      | T1          | 491      | 1.0     | 0.281    | 11.3    | LOS B    | 4.6      | 32.2     | 0.67   | 0.56      | 50.7    |
| 37      | R2          | 56       | 1.0     | 0.339    | 30.8    | LOS C    | 1.6      | 11.0     | 0.91   | 0.76      | 28.8    |
| Appro   | ach         | 755      | 1.0     | 0.339    | 11.6    | LOS B    | 4.6      | 32.2     | 0.59   | 0.60      | 49.3    |
| All Vel | nicles      | 2416     | 1.0     | 0.741    | 15.7    | LOS B    | 16.6     | 117.1    | 0.77   | 0.73      | 47.4    |

| Move    | ment Performance - Pedestri | ans    |         |          |            |          |        |           |
|---------|-----------------------------|--------|---------|----------|------------|----------|--------|-----------|
| Mov     |                             | Demand | Average | Level of |            |          | Prop.  | Effective |
| ID      | Description                 | Flow   | Delay   | Service  | Que        | eue      | Queued | Stop Rate |
|         |                             |        |         |          | Pedestrian | Distance |        |           |
|         |                             | ped/h  | sec     |          | ped        | m        |        | per ped   |
| P5      | SouthEast Full Crossing     | 53     | 19.2    | LOS B    | 0.1        | 0.1      | 0.80   | 0.80      |
| P8      | SouthWest Full Crossing     | 53     | 24.4    | LOS C    | 0.1        | 0.1      | 0.90   | 0.90      |
| All Pec | lestrians                   | 105    | 21.8    | LOS C    |            |          | 0.85   | 0.85      |



## Site: Ki3 Bennett/ McMinn/ TBD Options 2031 PM

© i3 consultants WA | www.i3consultants.com

Signals - Fixed Time Isolated Cycle Time = 50 seconds (Practical Cycle Time)

| v    Total<br>veh/h    HV    Delay<br>%    Service<br>sec    Vehicles<br>veh    Distance<br>m    Queued<br>per veh    Stop Rate<br>per veh      SouthEast: McMinn (SE)    26    L2    66    1.0    0.063    7.7    LOS A    0.4    2.9    0.39    0.64      27    T1    74    1.0    0.327    20.8    LOS C    2.2    15.9    0.91    0.69      28    R2    74    1.0    0.327    26.9    LOS C    2.2    15.9    0.93    0.75      Approach    214    1.0    0.327    18.8    LOS B    2.2    15.9    0.75    0.70      NorthEast: TBD (NE)    29    L2    46    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7 |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| veh/h    %    v/c    sec    veh    m    per veh      SouthEast: McMinn (SE)    26    L2    66    1.0    0.063    7.7    LOS A    0.4    2.9    0.39    0.64      27    T1    74    1.0    0.327    20.8    LOS C    2.2    15.9    0.91    0.69      28    R2    74    1.0    0.327    26.9    LOS C    2.2    15.9    0.93    0.75      Approach    214    1.0    0.327    18.8    LOS B    2.2    15.9    0.75    0.70      NorthEast: TBD (NE)    29    L2    46    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach                                                       | Average |
| SouthEast: McMinn (SE)      26    L2    66    1.0    0.063    7.7    LOS A    0.4    2.9    0.39    0.64      27    T1    74    1.0    0.327    20.8    LOS C    2.2    15.9    0.91    0.69      28    R2    74    1.0    0.327    26.9    LOS C    2.2    15.9    0.93    0.75      Approach    214    1.0    0.327    18.8    LOS B    2.2    15.9    0.75    0.70      NorthEast: TBD (NE)    29    L2    46    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8                                                           | Speed   |
| 26    L2    66    1.0    0.063    7.7    LOS A    0.4    2.9    0.39    0.64      27    T1    74    1.0    0.327    20.8    LOS C    2.2    15.9    0.91    0.69      28    R2    74    1.0    0.327    26.9    LOS C    2.2    15.9    0.93    0.75      Approach    214    1.0    0.327    18.8    LOS B    2.2    15.9    0.93    0.75      NorthEast: TBD (NE)       19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                              | km/h    |
| 27  T1  74  1.0  0.327  20.8  LOS C  2.2  15.9  0.91  0.69    28  R2  74  1.0  0.327  26.9  LOS C  2.2  15.9  0.93  0.75    Approach  214  1.0  0.327  18.8  LOS B  2.2  15.9  0.75  0.70    NorthEast: TBD (NE)      1.0  0.497  19.4  LOS B  6.8  47.7  0.83  0.72    30  T1  645  1.0  0.497  13.8  LOS B  6.8  48.0  0.83  0.71    31  R2  33  1.0  0.160  26.7  LOS C  0.7  5.2  0.89  0.72    Approach  724  1.0  0.497  14.8  LOS B  6.8  48.0  0.83  0.71                                                                                                                                                                                                                                                                                                               |         |
| 28    R2    74    1.0    0.327    26.9    LOS C    2.2    15.9    0.93    0.75      Approach    214    1.0    0.327    18.8    LOS B    2.2    15.9    0.75    0.70      NorthEast: TBD (NE)    74    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                 | 46.5    |
| Approach2141.00.32718.8LOS B2.215.90.750.70NorthEast: TBD (NE)29L2461.00.49719.4LOS B6.847.70.830.7230T16451.00.49713.8LOS B6.848.00.830.7131R2331.00.16026.7LOS C0.75.20.890.72Approach7241.00.49714.8LOS B6.848.00.830.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.9    |
| NorthEast: TBD (NE)      29    L2    46    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                                                                                                                                                                            | 42.6    |
| 29    L2    46    1.0    0.497    19.4    LOS B    6.8    47.7    0.83    0.72      30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.0    |
| 30    T1    645    1.0    0.497    13.8    LOS B    6.8    48.0    0.83    0.71      31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| 31    R2    33    1.0    0.160    26.7    LOS C    0.7    5.2    0.89    0.72      Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.1    |
| Approach    724    1.0    0.497    14.8    LOS B    6.8    48.0    0.83    0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.8    |
| North Manding (NIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.4    |
| NorthWest: McMinn (NW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 32 L2 71 1.0 0.085 9.4 LOS A 0.6 4.4 0.50 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.3    |
| 33 T1 49 1.0 0.106 22.4 LOS C 0.6 4.0 0.92 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.7    |
| 34    R2    12    1.0    0.052    27.8    LOS C    0.3    1.9    0.91    0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.9    |
| Approach    132    1.0    0.106    15.9    LOS B    0.6    4.4    0.70    0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.2    |
| SouthWest: Bennett (SW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| 35 L2 226 1.0 0.174 6.9 LOS A 0.9 6.6 0.34 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.1    |
| 36 T1 920 1.0 0.748 17.2 LOS B 10.8 76.4 0.89 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.9    |
| 37    R2    84    1.0    0.321    23.8    LOS C    1.8    12.9    0.86    0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.5    |
| Approach    1231    1.0    0.748    15.8    LOS B    10.8    76.4    0.79    0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.7    |
| All Vehicles 2300 1.0 0.748 15.7 LOS B 10.8 76.4 0.79 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.0    |

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ment Performance - Pedestria | ins            |                  |       |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|-------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay |       | 3          |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |       | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |       | ped        | m        |                 | per ped                |
| P5        | SouthEast Full Crossing      | 53             | 19.4             | LOS B | 0.1        | 0.1      | 0.88            | 0.88                   |
| P8        | SouthWest Full Crossing      | 53             | 19.4             | LOS B | 0.1        | 0.1      | 0.88            | 0.88                   |
| All Ped   | estrians                     | 105            | 19.4             | LOS B |            |          | 0.88            | 0.88                   |



# Site: Ki4: Daly/ McMinn/ Stuart Jacobs 2031 AM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 50 seconds (Practical Cycle Time)

| Move    | ment P <u>er</u> | formance        | - Vehi        | cles      |                  |                     |                      |                      |                 |                        |                  |
|---------|------------------|-----------------|---------------|-----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov IE  | ODMov            | Demand<br>Total | Flows I<br>HV | Deg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |                  | veh/h           | %             | v/c       | sec              |                     | veh                  | m                    |                 | per veh                | km/h             |
| South   | East: McMir      | nn (SE)         |               |           |                  |                     |                      |                      |                 |                        |                  |
| 38      | L2               | 253             | 1.0           | 0.335     | 10.2             | LOS B               | 2.7                  | 19.3                 | 0.60            | 0.72                   | 52.4             |
| 39      | T1               | 27              | 1.0           | 0.499     | 24.1             | LOS C               | 2.8                  | 19.6                 | 0.98            | 0.77                   | 41.2             |
| 40      | R2               | 195             | 1.0           | 0.499     | 29.7             | LOS C               | 2.8                  | 19.6                 | 0.98            | 0.77                   | 48.4             |
| Approa  | ach              | 475             | 1.0           | 0.499     | 19.0             | LOS B               | 2.8                  | 19.6                 | 0.78            | 0.75                   | 49.7             |
| NorthE  | East: Stuart     |                 |               |           |                  |                     |                      |                      |                 |                        |                  |
| 41      | L2               | 442             | 1.0           | 0.375     | 10.2             | LOS B               | 5.2                  | 36.4                 | 0.51            | 0.71                   | 55.2             |
| 42      | T1               | 897             | 1.0           | 0.844     | 21.3             | LOS C               | 11.6                 | 82.2                 | 0.83            | 0.91                   | 47.8             |
| 43      | R2               | 231             | 1.0           | 0.573     | 21.1             | LOS C               | 4.9                  | 34.7                 | 0.87            | 0.81                   | 45.2             |
| Approa  | ach              | 1569            | 1.0           | 0.844     | 18.2             | LOS B               | 11.6                 | 82.2                 | 0.75            | 0.84                   | 50.1             |
| North\  | Vest: McMi       | nn (NW)         |               |           |                  |                     |                      |                      |                 |                        |                  |
| 44      | L2               | 38              | 1.0           | 0.651     | 27.8             | LOS C               | 3.9                  | 27.4                 | 1.00            | 0.84                   | 42.7             |
| 45      | T1               | 112             | 1.0           | 0.651     | 25.3             | LOS C               | 3.9                  | 27.4                 | 1.00            | 0.84                   | 42.3             |
| 46      | R2               | 96              | 1.0           | 0.433     | 26.2             | LOS C               | 2.4                  | 16.6                 | 0.97            | 0.76                   | 23.6             |
| Approa  | ach              | 245             | 1.0           | 0.651     | 26.0             | LOS C               | 3.9                  | 27.4                 | 0.99            | 0.81                   | 37.7             |
| South   | Nest: Daly       |                 |               |           |                  |                     |                      |                      |                 |                        |                  |
| 47      | L2               | 5               | 1.0           | 0.266     | 16.6             | LOS B               | 3.4                  | 24.3                 | 0.71            | 0.59                   | 11.5             |
| 48      | T1               | 407             | 1.0           | 0.266     | 11.1             | LOS B               | 3.4                  | 24.3                 | 0.71            | 0.59                   | 53.0             |
| Approa  | ach              | 413             | 1.0           | 0.266     | 11.1             | LOS B               | 3.4                  | 24.3                 | 0.71            | 0.59                   | 52.4             |
| All Vel | nicles           | 2702            | 1.0           | 0.844     | 18.0             | LOS B               | 11.6                 | 82.2                 | 0.77            | 0.78                   | 49.6             |

| Move    | ment Performance - Pedestria | ans    |         |          |            |          |                 |           |  |
|---------|------------------------------|--------|---------|----------|------------|----------|-----------------|-----------|--|
| Mov     |                              | Demand | Average | Level of | Average    | Back of  | Prop. Effective |           |  |
| ID      | Description                  | Flow   | Delay   | Service  | Que        | eue      | Queued          | Stop Rate |  |
|         |                              |        |         |          | Pedestrian | Distance |                 |           |  |
|         |                              | ped/h  | sec     |          | ped        | m        |                 | per ped   |  |
| P11     | SouthEast Stage 1            | 5      | 11.6    | LOS B    | 0.0        | 0.0      | 0.68            | 0.68      |  |
| P12     | SouthEast Stage 2            | 5      | 19.4    | LOS B    | 0.0        | 0.0      | 0.88            | 0.88      |  |
| P3      | NorthWest Full Crossing      | 5      | 13.7    | LOS B    | 0.0        | 0.0      | 0.74            | 0.74      |  |
| All Peo | destrians                    | 16     | 14.9    | LOS B    |            |          | 0.77            | 0.77      |  |



# Site: Ki4: Daly/ McMinn/ Stuart Jacobs 2031 PM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 70 seconds (Practical Cycle Time)

| Move    | ment Per    | formance | - Vehi | cles      |                  |                     |                      |                      |                 |                        |                  |
|---------|-------------|----------|--------|-----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
|         | ODMov       |          |        | Deg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |             | veh/h    | %      | v/c       | sec              |                     | veh                  | m                    |                 | per veh                | km/h             |
| SouthE  | East: McMi  | nn (SE)  |        |           |                  |                     |                      |                      |                 |                        |                  |
| 38      | L2          | 287      | 1.0    | 0.278     | 8.0              | LOS A               | 2.6                  | 18.5                 | 0.39            | 0.67                   | 53.7             |
| 39      | T1          | 41       | 1.0    | 0.784     | 30.2             | LOS C               | 5.9                  | 41.5                 | 0.88            | 0.90                   | 38.6             |
| 40      | R2          | 486      | 1.0    | 0.784     | 36.3             | LOS D               | 12.5                 | 88.5                 | 0.96            | 0.92                   | 46.4             |
| Approa  | ach         | 815      | 1.0    | 0.784     | 26.0             | LOS C               | 12.5                 | 88.5                 | 0.75            | 0.83                   | 47.8             |
| NorthE  | ast: Stuart |          |        |           |                  |                     |                      |                      |                 |                        |                  |
| 41      | L2          | 149      | 1.0    | 0.109     | 8.3              | LOS A               | 1.4                  | 9.9                  | 0.30            | 0.63                   | 56.0             |
| 42      | T1          | 580      | 1.0    | 0.462     | 15.4             | LOS B               | 8.6                  | 60.7                 | 0.74            | 0.63                   | 50.7             |
| 43      | R2          | 193      | 1.0    | 0.994     | 86.2             | LOS F               | 11.8                 | 83.5                 | 1.00            | 1.35                   | 26.2             |
| Approa  | ach         | 922      | 1.0    | 0.994     | 29.1             | LOS C               | 11.8                 | 83.5                 | 0.72            | 0.78                   | 44.9             |
| NorthV  | Vest: McMi  | nn (NW)  |        |           |                  |                     |                      |                      |                 |                        |                  |
| 44      | L2          | 39       | 1.0    | 0.595     | 38.7             | LOS D               | 3.5                  | 24.6                 | 1.00            | 0.80                   | 38.1             |
| 45      | T1          | 58       | 1.0    | 0.595     | 36.3             | LOS D               | 3.5                  | 24.6                 | 1.00            | 0.80                   | 37.5             |
| 46      | R2          | 43       | 1.0    | 0.273     | 37.0             | LOS D               | 1.5                  | 10.5                 | 0.97            | 0.73                   | 19.2             |
| Approa  | ach         | 140      | 1.0    | 0.595     | 37.2             | LOS D               | 3.5                  | 24.6                 | 0.99            | 0.78                   | 34.0             |
| South\  | Nest: Daly  |          |        |           |                  |                     |                      |                      |                 |                        |                  |
| 47      | L2          | 26       | 1.0    | 0.518     | 22.2             | LOS C               | 10.7                 | 75.3                 | 0.80            | 0.70                   | 10.9             |
| 48      | T1          | 804      | 1.0    | 0.518     | 16.6             | LOS B               | 10.7                 | 75.5                 | 0.80            | 0.69                   | 50.0             |
| Approa  | ach         | 831      | 1.0    | 0.518     | 16.8             | LOS B               | 10.7                 | 75.5                 | 0.80            | 0.69                   | 48.7             |
| All Veł | nicles      | 2707     | 1.0    | 0.994     | 24.8             | LOS C               | 12.5                 | 88.5                 | 0.77            | 0.77                   | 46.5             |

| Move      | ment Performance - Pedestria | ans            |                  |       |            |          |                 |                        |
|-----------|------------------------------|----------------|------------------|-------|------------|----------|-----------------|------------------------|
| Mov<br>ID | Description                  | Demand<br>Flow | Average<br>Delay |       |            |          | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                              |                |                  |       | Pedestrian | Distance |                 |                        |
|           |                              | ped/h          | sec              |       | ped        | m        |                 | per ped                |
| P11       | SouthEast Stage 1            | 5              | 14.5             | LOS B | 0.0        | 0.0      | 0.64            | 0.64                   |
| P12       | SouthEast Stage 2            | 5              | 29.3             | LOS C | 0.0        | 0.0      | 0.91            | 0.91                   |
| P3        | NorthWest Full Crossing      | 5              | 16.5             | LOS B | 0.0        | 0.0      | 0.69            | 0.69                   |
| All Ped   | lestrians                    | 16             | 20.1             | LOS C |            |          | 0.75            | 0.75                   |



# Site: Ki4: Daly/ McMinn/ Stuart Options 2031 AM

© i3 consultants WA | www.i3consultants.com Signals - Fixed Time Isolated Cycle Time = 80 seconds (Practical Cycle Time)

| Move    | ment Per    | formance        | - Vehi      | icles     |                  |                     |                      |                      |                 |                        |                  |
|---------|-------------|-----------------|-------------|-----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID  | ODMo        | Demand<br>Total | Flows<br>HV | Deg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |             | veh/h           | %           | v/c       | sec              |                     | veh                  | m                    |                 | per veh                | km/h             |
| SouthE  | ast: McMi   | nn (SE)         |             |           |                  |                     |                      |                      |                 |                        |                  |
| 38      | L2          | 253             | 1.0         | 0.597     | 23.1             | LOS C               | 7.5                  | 53.0                 | 0.86            | 0.81                   | 45.8             |
| 39      | T1          | 27              | 1.0         | 0.683     | 42.0             | LOS D               | 4.6                  | 32.8                 | 1.00            | 0.84                   | 34.4             |
| 40      | R2          | 195             | 1.0         | 0.683     | 47.6             | LOS D               | 4.6                  | 32.8                 | 1.00            | 0.84                   | 43.5             |
| Approa  | ich         | 475             | 1.0         | 0.683     | 34.3             | LOS C               | 7.5                  | 53.0                 | 0.92            | 0.83                   | 44.0             |
| NorthE  | ast: Stuart |                 |             |           |                  |                     |                      |                      |                 |                        |                  |
| 41      | L2          | 115             | 1.0         | 0.084     | 8.7              | LOS A               | 1.2                  | 8.7                  | 0.30            | 0.63                   | 55.8             |
| 42      | T1          | 1458            | 1.0         | 0.892     | 28.2             | LOS C               | 36.3                 | 255.9                | 0.77            | 0.89                   | 44.9             |
| 43      | R2          | 231             | 1.0         | 0.851     | 41.4             | LOS D               | 9.8                  | 69.0                 | 0.77            | 0.98                   | 36.9             |
| Approa  | ich         | 1803            | 1.0         | 0.892     | 28.6             | LOS C               | 36.3                 | 255.9                | 0.74            | 0.88                   | 44.7             |
| NorthV  | /est: McMi  | nn (NW)         |             |           |                  |                     |                      |                      |                 |                        |                  |
| 44      | L2          | 38              | 1.0         | 0.366     | 39.7             | LOS D               | 3.0                  | 20.9                 | 0.97            | 0.75                   | 37.7             |
| 45      | T1          | 40              | 1.0         | 0.366     | 37.3             | LOS D               | 3.0                  | 20.9                 | 0.97            | 0.75                   | 37.0             |
| 46      | R2          | 167             | 1.0         | 0.807     | 45.7             | LOS D               | 7.2                  | 51.0                 | 1.00            | 0.92                   | 16.7             |
| Approa  | ich         | 245             | 1.0         | 0.807     | 43.4             | LOS D               | 7.2                  | 51.0                 | 0.99            | 0.87                   | 25.4             |
| SouthV  | Vest: Daly  |                 |             |           |                  |                     |                      |                      |                 |                        |                  |
| 47      | L2          | 5               | 1.0         | 0.317     | 15.0             | LOS B               | 7.1                  | 50.1                 | 0.56            | 0.49                   | 11.7             |
| 48      | T1          | 700             | 1.0         | 0.317     | 9.4              | LOS A               | 7.1                  | 50.1                 | 0.56            | 0.48                   | 53.9             |
| Approa  | ich         | 705             | 1.0         | 0.317     | 9.5              | LOS A               | 7.1                  | 50.1                 | 0.56            | 0.48                   | 53.6             |
| All Veh | icles       | 3228            | 1.0         | 0.892     | 26.4             | LOS C               | 36.3                 | 255.9                | 0.75            | 0.79                   | 45.2             |

| Move    | ment Performance - Pedestri | ans    |         |          |            |          |                 |           |  |
|---------|-----------------------------|--------|---------|----------|------------|----------|-----------------|-----------|--|
| Mov     |                             | Demand | Average | Level of | Average    | Back of  | Prop. Effective |           |  |
| ID      | Description                 | Flow   | Delay   | Service  | Que        | eue      | Queued          | Stop Rate |  |
|         |                             |        |         |          | Pedestrian | Distance |                 |           |  |
|         |                             | ped/h  | sec     |          | ped        | m        |                 | per ped   |  |
| P11     | SouthEast Stage 1           | 5      | 9.0     | LOS A    | 0.0        | 0.0      | 0.48            | 0.48      |  |
| P12     | SouthEast Stage 2           | 5      | 33.3    | LOS D    | 0.0        | 0.0      | 0.91            | 0.91      |  |
| P3      | NorthWest Full Crossing     | 5      | 10.5    | LOS B    | 0.0        | 0.0      | 0.51            | 0.51      |  |
| All Pec | lestrians                   | 16     | 17.6    | LOS B    |            |          | 0.63            | 0.63      |  |

Barneson Boulevard Detailed Design – Traffic Modelling Assessment Review of Jacobs memorandum 27 May 2016 (Modelling Memo) Prepared for Mr Nick Hanigan



## LANE SUMMARY

### Site: Ki4: Daly/ McMinn/ Stuart Options 2031 PM © i3 consultants WA | www.i3consultants.com

Signals - Fixed Time Isolated Cycle Time = 110 seconds (Practical Cycle Time)

| Lane Use   | and F   | Perfo | orman              | ce _  |       |         |          |          |          |        |        |      |                   |
|------------|---------|-------|--------------------|-------|-------|---------|----------|----------|----------|--------|--------|------|-------------------|
|            |         |       | Cap.               | Deg.  | Lane  | Average | Level of | 95% Back | of Queue | Lane   | Lane   |      | Prob.             |
| _          |         | ows   |                    | Satn  | Util. | Delay   | Service  |          |          | Config | Length | Adj. | Block.            |
|            | Total   | HV    |                    |       |       |         |          | Veh      | Dist     |        |        |      |                   |
|            | veh/h   |       | veh/h              | v/c   | %     | sec     |          |          | m        |        | m      | %    | %                 |
| SouthEast: | McMin   | n (Sl | E)                 |       |       |         |          |          |          |        |        |      |                   |
| Lane 1     | 287     | 1.0   | 722 <sup>1</sup>   | 0.398 | 100   | 16.9    | LOS B    | 8.1      | 57.5     | Short  | 15     | 0.0  | NA                |
| Lane 2     | 146     | 1.0   | 1461               | 1.004 | 100   | 208.5   | LOS F    | 12.8     | 90.4     | Full   | 1000   | 0.0  | 0.0               |
| Lane 3     | 381     | 1.0   | 379 <sup>1</sup>   | 1.004 | 100   | 110.0   | LOS F    | 31.4     | 221.5    | Short  | 50     | 0.0  | NA                |
| Approach   | 815     | 1.0   |                    | 1.004 |       | 94.9    | LOS F    | 31.4     | 221.5    |        |        |      |                   |
| NorthEast: | Stuart  |       |                    |       |       |         |          |          |          |        |        |      |                   |
| Lane 1     | 31      | 1.0   | 1525               | 0.020 | 100   | 7.4     | LOS A    | 0.3      | 2.0      | Short  | 25     | 0.0  | NA                |
| Lane 2     | 683     | 1.0   | 1003 <sup>1</sup>  | 0.681 | 100   | 19.4    | LOS B    | 25.9     | 183.1    | Full   | 1100   | 0.0  | 0.0               |
| Lane 3     | 248     | 1.0   | 364 <mark>1</mark> | 0.681 | 100   | 15.6    | LOS B    | 7.2      | 51.1     | Full   | 1100   | 0.0  | 0.0               |
| Lane 4     | 193     | 1.0   | 138 <mark>1</mark> | 1.398 | 100   | 448.8   | LOS F    | 36.4     | 256.7    | Short  | 20     | 0.0  | NA                |
| Approach   | 1154    | 1.0   |                    | 1.398 |       | 90.0    | LOS F    | 36.4     | 256.7    |        |        |      |                   |
| NorthWest  | : McMir | nn (N | W)                 |       |       |         |          |          |          |        |        |      |                   |
| Lane 1     | 45      | 1.0   | 118                | 0.383 | 100   | 58.7    | LOS E    | 2.5      | 17.5     | Full   | 14     | 0.0  | <mark>25.4</mark> |
| Lane 2     | 95      | 1.0   | 117                | 0.807 | 100   | 64.5    | LOS E    | 5.6      | 39.6     | Full   | 16     | 0.0  | <mark>90.2</mark> |
| Approach   | 140     | 1.0   |                    | 0.807 |       | 62.6    | LOS E    | 5.6      | 39.6     |        |        |      |                   |
| SouthWest  | : Daly  |       |                    |       |       |         |          |          |          |        |        |      |                   |
| Lane 1     | 625     | 1.0   | 1037               | 0.603 | 100   | 18.8    | LOS B    | 22.7     | 160.4    | Full   | 280    | 0.0  | 0.0               |
| Lane 2     | 626     | 1.0   | 1039               | 0.603 | 100   | 18.6    | LOS B    | 22.8     | 160.7    | Full   | 280    | 0.0  | 0.0               |
| Approach   | 1252    | 1.0   |                    | 0.603 |       | 18.7    | LOS B    | 22.8     | 160.7    |        |        |      |                   |
| Intersecti | 3360    | 1.0   |                    | 1.398 |       | 63.5    | LOS E    | 36.4     | 256.7    |        |        |      |                   |

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the adjacent full-length lanes. Some upstream delays at entry to short lanes are not included.



### ABOUT THE AUTHOR

David Wilkins is an RTA NSW Certified Level 3 Lead Auditor (RSA-08-0178) and Main Roads Western Australia (MRWA) accredited Senior Road Safety Auditor (SRSA 0101). In addition to this, David is an MRWA accredited Crash Investigation Team Leader and Roadworks Traffic Manager (MRWA-RTM-10-RTM20). David has undertaken 83 road safety audits in the last five years and 205 road safety audits since 2001 across the full range of stages from feasibility through to pre-opening, including roadworks, existing roads, schools and mine sites.

David's specialist skills are in the management and development of transport infrastructure and planning, particularly with respect to road safety engineering, roadworks traffic management, traffic engineering, crash investigation, road safety audits, alternative transport systems (TravelSmart, shared paths, cycle facilities), transport statements, transport assessments, parking demand management, local area traffic management, speed management, accessible environments and innovation.

David specialises in undertaking and preparing traffic impact assessments in accordance with the Austroads 'Guide to Traffic Management Part 12: Traffic Impacts of Developments'.